Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (206)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38709040

RESUMO

Aflatoxins are highly carcinogenic secondary metabolites of some fungal species, particularly Aspergillus flavus. Aflatoxins often contaminate economically important agricultural commodities, including peanuts, posing a high risk to human and animal health. Due to the narrow genetic base, peanut cultivars demonstrate limited resistance to fungal pathogens. Therefore, numerous wild peanut species with tolerance to Aspergillus have received substantial consideration by scientists as sources of disease resistance. Exploring plant germplasm for resistance to aflatoxins is difficult since aflatoxin accumulation does not follow a normal distribution, which dictates the need for the analyses of thousands of single peanut seeds. Sufficiently hydrated peanut (Arachis spp.) seeds, when infected by Aspergillus species, are capable of producing biologically active stilbenes (stilbenoids) that are considered defensive phytoalexins. Peanut stilbenes inhibit fungal development and aflatoxin production. Therefore, it is crucial to analyze the same seeds for peanut stilbenoids to explain the nature of seed resistance/susceptibility to the Aspergillus invasion. None of the published methods offer single-seed analyses for aflatoxins and/or stilbene phytoalexins. We attempted to fulfill the demand for such a method that is environment-friendly, uses inexpensive consumables, and is sensitive and selective. In addition, the method is non-destructive since it uses only half of the seed and leaves the other half containing the embryonic axis intact. Such a technique allows germination and growth of the peanut plant to full maturity from the same seed used for the aflatoxin and stilbenoid analysis. The integrated part of this method, the manual challenging of the seeds with Aspergillus, is a limiting step that requires more time and labor compared to other steps in the method. The method has been used for the exploration of wild Arachis germplasm to identify species resistant to Aspergillus and to determine and characterize novel sources of genetic resistance to this fungal pathogen.


Assuntos
Aflatoxinas , Arachis , Fitoalexinas , Sementes , Sesquiterpenos , Estilbenos , Arachis/microbiologia , Arachis/química , Sementes/química , Aflatoxinas/análise , Aflatoxinas/metabolismo , Estilbenos/metabolismo , Estilbenos/análise , Estilbenos/química , Sesquiterpenos/análise , Sesquiterpenos/metabolismo , Sesquiterpenos/química , Cromatografia Líquida de Alta Pressão/métodos
2.
PLoS One ; 19(4): e0299992, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625995

RESUMO

The genetic diversity that exists in natural populations of Arachis duranensis, the wild diploid donor of the A subgenome of cultivated tetraploid peanut, has the potential to improve crop adaptability, resilience to major pests and diseases, and drought tolerance. Despite its potential value for peanut improvement, limited research has been focused on the association between allelic variation, environmental factors, and response to early (ELS) and late leaf spot (LLS) diseases. The present study implemented a landscape genomics approach to gain a better understanding of the genetic variability of A. duranensis represented in the ex-situ peanut germplasm collection maintained at the U.S. Department of Agriculture, which spans the entire geographic range of the species in its center of origin in South America. A set of 2810 single nucleotide polymorphism (SNP) markers allowed a high-resolution genome-wide characterization of natural populations. The analysis of population structure showed a complex pattern of genetic diversity with five putative groups. The incorporation of bioclimatic variables for genotype-environment associations, using the latent factor mixed model (LFMM2) method, provided insights into the genomic signatures of environmental adaptation, and led to the identification of SNP loci whose allele frequencies were correlated with elevation, temperature, and precipitation-related variables (q < 0.05). The LFMM2 analysis for ELS and LLS detected candidate SNPs and genomic regions on chromosomes A02, A03, A04, A06, and A08. These findings highlight the importance of the application of landscape genomics in ex situ collections of peanut and other crop wild relatives to effectively identify favorable alleles and germplasm for incorporation into breeding programs. We report new sources of A. duranensis germplasm harboring adaptive allelic variation, which have the potential to be utilized in introgression breeding for a single or multiple environmental factors, as well as for resistance to leaf spot diseases.


Assuntos
Arachis , Resistência à Doença , Arachis/genética , Resistência à Doença/genética , Melhoramento Vegetal , Genômica , Polimorfismo de Nucleotídeo Único , Genoma de Planta
3.
BMC Res Notes ; 16(1): 58, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085927

RESUMO

OBJECTIVE: Two main fungal leaf spot diseases occur in peanut, namely early leaf spot (ELS) and late leaf spot (LLS), these cause a yearly average of $44 million losses. Limited genetic information, 3534 bp of sequencing, exists about the causal agent of LLS, Cercosporidium personatum (syn. Nothopassalora personata, syn. Phaeoisariopsis personata). The extremely slow growth of this fungus, approximately 1 cm colony in 6 months, and challenges in nucleic acid extractions have hindered research on LLS. Our goal in this work is to provide a reference genome for research on this pathogen. RESULTS: Whole genome and transcriptome sequencing of the LLS fungus were obtained. A total of 233,542,110 reads of the genome were de novo assembled resulting in 1061 scaffolds, and estimated genome size 27,597,787 bp. RNA sequencing resulted in 11,848,198 reads that were de novo assembled into 13,343 contigs. Genome annotation resulted in 10,703 putative genes. BUSCO analysis of the genome and annotation resulted in 91.1% and 89.5% completeness, respectively. Phylogenetic dendrograms for 5442 bp and 4401 bp of RNA Polymerase II largest and second largest subunits, and for 5474 bp of the ribosomal RNA cistron of C. personatum are presented in relation to closely related fungi.


Assuntos
Ascomicetos , Fabaceae , Arachis/genética , Transcriptoma , Filogenia , Fabaceae/genética , Ascomicetos/genética
4.
BMC Genom Data ; 24(1): 9, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36793017

RESUMO

OBJECTIVES: The fungal pathogen Thecaphora frezii Carranza & Lindquist causes peanut smut, a severe disease currently endemic in Argentina. To study the ecology of T. frezii and to understand the mechanisms of smut resistance in peanut plants, it is crucial to know the genetics of this pathogen. The objective of this work was to isolate the pathogen and generate the first draft genome of T. frezii that will be the basis for analyzing its potential genetic diversity and its interaction with peanut cultivars. Our research group is working to identify peanut germplasm with smut resistance and to understand the genetics of the pathogen. Knowing the genome of T. frezii will help analyze potential variants of this pathogen and contribute to develop enhanced peanut germplasm with broader and long-lasting resistance. DATA DESCRIPTION: Thecaphora frezii isolate IPAVE 0401 (here referred as T.f.B7) was obtained from a single hyphal-tip culture, its DNA was sequenced using Pacific Biosciences Sequel II (PacBio) and Illumina NovaSeq6000 (Nova). Data from both sequencing platforms were combined and the de novo assembling estimated a 29.3 Mb genome size. Completeness of the genome examined using Benchmarking Universal Single-Copy Orthologs (BUSCO) showed the assembly had 84.6% of the 758 genes in fungi_odb10.


Assuntos
Basidiomycota , Fabaceae , Ustilaginales , Arachis/genética , Genoma , Fabaceae/genética , Ustilaginales/genética
5.
J Agric Food Chem ; 70(4): 1101-1110, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35061949

RESUMO

The peanut plant accumulates defensive stilbenoid phytoalexins in response to the presence of soil fungi, which in turn produce phytoalexin-detoxifying enzymes for successfully invading the plant host. Aspergillus spp. are opportunistic pathogens that invade peanut seeds; most common fungal species often produce highly carcinogenic aflatoxins. The purpose of the present research was to evaluate the in vitro dynamics of peanut phytoalexin transformation/detoxification by important fungal species. This work revealed that in feeding experiments, Aspergillus spp. from section Flavi were capable of degrading the major peanut phytoalexin, arachidin-3, into its hydroxylated homolog, arachidin-1, and a benzenoid, SB-1. However, Aspergillus niger from section Nigri as well as other fungal and bacterial species tested, which are not known to be involved in the infection of the peanut plant, were incapable of changing the structure of arachidin-3. The results of feeding experiments with arachidin-1 and resveratrol are also reported. The research provided new knowledge on the dynamics of peanut stilbenoid transformations by essential fungi. These findings may contribute to the elucidation of the phytoalexin detoxification mechanism involved in the infection of peanut by important toxigenic Aspergillus spp.


Assuntos
Aflatoxinas , Sesquiterpenos , Estilbenos , Arachis , Sementes , Fitoalexinas
6.
PeerJ ; 9: e10581, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33575123

RESUMO

Peanut smut caused by Thecaphora frezii is a severe fungal disease currently endemic to Argentina and Brazil. The identification of smut resistant germplasm is crucial in view of the potential risk of a global spread. In a recent study, we reported new sources of smut resistance and demonstrated its introgression into elite peanut cultivars. Here, we revisited one of these sources (line I0322) to verify its presence in the U.S. peanut germplasm collection and to identify single nucleotide polymorphisms (SNPs) potentially associated with resistance. Five accessions of Arachis hypogaea subsp. fastigiata from the U.S. peanut collection, along with the resistant source and derived inbred lines were genotyped with a 48K SNP peanut array. A recently developed SNP genotyping platform called RNase H2 enzyme-based amplification (rhAmp) was further applied to validate selected SNPs in a larger number of individuals per accession. More than 14,000 SNPs and nine rhAmp assays confirmed the presence of a germplasm in the U.S. peanut collection that is 98.6% identical (P < 0.01, bootstrap t-test) to the resistant line I0322. We report this germplasm with accompanying genetic information, genotyping data, and diagnostic SNP markers.

7.
Mol Biol Rep ; 48(1): 323-334, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33403558

RESUMO

Early leaf spot (ELS) and late leaf spot (LLS) are major fungal diseases of peanut that can severely reduce yield and quality. Development of acceptable genetic resistance has been difficult due to a strong environmental component and many major and minor QTLs. Resistance genes (R-genes) are an important component of plant immune system and have been identified in peanut. Association of specific R-genes to leaf spot resistance will provide molecular targets for marker-assisted breeding strategies. In this study, advanced breeding lines from different pedigrees were evaluated for leaf spot resistance and 76 candidate R-genes expression study was applied to susceptible and resistant lines. Thirty-six R-genes were differentially expressed and significantly correlated with resistant lines, of which a majority are receptor like kinases (RLKs) and receptor like proteins (RLPs) that sense the presence of pathogen at the cell surface and initiate protection response. The largest group was receptor-like cytoplasmic kinases (RLCKs) VII that are involved in pattern-triggered kinase signaling resulting in the production reactive oxygen species (ROS). Four R-genes were homologous to TMV resistant protein N which has shown to confer resistance against tobacco mosaic virus (TMV). When mapped to peanut genomes, 36 R-genes were represented in most chromosomes except for A09 and B09. Low levels of gene-expression in resistant lines suggest expression is tightly controlled to balance the cost of R-gene expression to plant productively. Identification and association of R-genes involved in leaf spot resistance will facilitate genetic selection of leaf spot resistant lines with good agronomic traits.


Assuntos
Arachis/genética , Resistência à Doença/imunologia , Genes vpr/genética , Imunidade Vegetal , Arachis/crescimento & desenvolvimento , Arachis/imunologia , Arachis/microbiologia , Mapeamento Cromossômico , Resistência à Doença/genética , Regulação da Expressão Gênica/genética , Ligação Genética/genética , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética
8.
Microbiol Resour Announc ; 9(30)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703834

RESUMO

Draft genomes of 16 isolates of Aspergillus flavus Link and Aspergillus parasiticus Speare, identified as the predominant genotypes colonizing peanuts in four farming regions in Ethiopia, are reported. These data will allow mining for sequences that could be targeted by RNA interference to prevent aflatoxin accumulation in peanut seeds.

9.
PLoS One ; 14(2): e0211920, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30735547

RESUMO

Smut disease caused by the fungal pathogen Thecaphora frezii Carranza & Lindquist is threatening the peanut production in Argentina. Fungicides commonly used in the peanut crop have shown little or no effect controlling the disease, making it a priority to obtain peanut varieties resistant to smut. In this study, recombinant inbred lines (RILs) were developed from three crosses between three susceptible peanut elite cultivars (Arachis hypogaea L. subsp. hypogaea) and two resistant landraces (Arachis hypogaea L. subsp. fastigiata Waldron). Parents and RILs were evaluated under high inoculum pressure (12000 teliospores g-1 of soil) over three years. Disease resistance parameters showed a broad range of variation with incidence mean values ranging from 1.0 to 35.0% and disease severity index ranging from 0.01 to 0.30. Average heritability (h2) estimates of 0.61 to 0.73 indicated that resistance in the RILs was heritable, with several lines (4 to 7 from each cross) showing a high degree of resistance and stability over three years. Evidence of genetic transfer between genetically distinguishable germplasm (introgression in a broad sense) was further supported by simple-sequence repeats (SSRs) and Insertion/Deletion (InDel) marker genotyping. This is the first report of smut genetic resistance identified in peanut landraces and its introgression into elite peanut cultivars.


Assuntos
Arachis/genética , Basidiomycota/patogenicidade , Resistência à Doença/genética , Doenças das Plantas/genética , Imunidade Vegetal/genética , Alelos , Arachis/imunologia , Arachis/microbiologia , Basidiomycota/crescimento & desenvolvimento , Cruzamentos Genéticos , Marcadores Genéticos , Genótipo , Mutação INDEL , Repetições de Microssatélites , Melhoramento Vegetal/métodos , Doenças das Plantas/imunologia , Característica Quantitativa Herdável
10.
Mol Biol Rep ; 46(1): 225-239, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30498882

RESUMO

Peanut (Arachis hypogaea L.) is an important food and oilseed crop worldwide. Yield and quality can be significantly reduced by foliar fungal diseases, such as early and late leaf spot diseases. Acceptable levels of leaf spot resistance in cultivated peanut have been elusive due to environmental interactions and the proper combination of QTLs in any particular peanut genotype. Resistance gene analogs, as potential resistance (R)-genes, have unique roles in the recognition and activation of disease resistance responses. Novel R-genes can be identified by searches for conserved domains such as nucleotide binding site, leucine rich repeat, receptor like kinase, and receptor like protein from expressed genes or through genomic sequences. Expressed R-genes represent necessary plant signals in a disease response. The goals of this research are to identify expressed R-genes from cultivated peanuts that are naturally infected by early and late spot pathogens, compare these to the closest diploid progenitors, and evaluate specific gene expression in cultivated peanuts. Putative peanut R-genes (381) were available from a public database (NCBI). Primers were designed and PCR products were sequenced. A total of 214 sequences were produced which matched to proteins with the corresponding R-gene motifs. These R-genes were mapped to the genome sequences of Arachis duranensis and Arachis ipaensis, which are the closest diploid progenitors for tetraploid cultivated peanut, A. hypogaea. Identification and association of specific gene-expression will elucidate potential disease resistance mechanism in peanut and may facilitate the selection of breeding lines with high levels of leaf spot resistance.


Assuntos
Arachis/genética , Resistência à Doença/genética , Arachis/microbiologia , Sequência de Bases/genética , Mapeamento Cromossômico/métodos , Etiquetas de Sequências Expressas , Expressão Gênica/genética , Ligação Genética/genética , Genoma de Planta/genética , Micoses/genética , Folhas de Planta/microbiologia , Locos de Características Quantitativas/genética
11.
Mycologia ; 109(2): 200-209, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28506119

RESUMO

Aflatoxins are among the most powerful carcinogens in nature. The major aflatoxin-producing fungi are Aspergillus flavus and A. parasiticus. Numerous crops, including peanut, are susceptible to aflatoxin contamination by these fungi. There has been an increased use of RNA interference (RNAi) technology to control phytopathogenic fungi in recent years. In order to develop molecular tools targeting specific genes of these fungi for the control of aflatoxins, it is necessary to obtain their genome sequences. Although high-throughput sequencing is readily available, it is still impractical to sequence the genome of every isolate. Thus, in this work, the authors proposed a workflow that allowed prescreening of 238 Aspergillus section Flavi isolates from peanut seeds from Georgia, USA. The aflatoxin biosynthesis cluster (ABC) of the isolates was fingerprinted at 25 InDel (insertion/deletion) loci using capillary electrophoresis. All isolates were tested for aflatoxins using ultra-high-performance liquid chromatography. The neighbor-joining, three-dimension (3D) principal coordinate, and Structure analyses revealed that the Aspergillus isolates sampled consisted of three main groups determined by their capability to produce aflatoxins. Group I comprised 10 non-aflatoxigenic A. flavus; Group II included A. parasiticus; and Group III included mostly aflatoxigenic A. flavus and the three non-aflatoxigenic A. caelatus. Whole genomes of 10 representative isolates from different groups were sequenced. Although InDels in Aspergillus have been used by other research groups, this is the first time that the cluster analysis resulting from fingerprinting was followed by whole-genome sequencing of representative isolates. In our study, cluster analysis of ABC sequences validated the results obtained with fingerprinting. This shows that InDels used here can predict similarities at the genome level. Our results also revealed a relationship between groups and their capability to produce aflatoxins. The database generated of Aspergillus spp. can be used to select target genes and assess the effectiveness of RNAi technology to reduce aflatoxin contamination in peanut.


Assuntos
Aflatoxinas/genética , Arachis/microbiologia , Aspergillus flavus/classificação , Aspergillus flavus/genética , Variação Genética , Sementes/microbiologia , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Impressões Digitais de DNA , Eletroforese Capilar , Marcadores Genéticos/genética , Georgia , Mutação INDEL , Reprodutibilidade dos Testes , Sequenciamento Completo do Genoma
12.
Plant Sci ; 257: 106-125, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28224915

RESUMO

Aflatoxin contamination is a major constraint in food production worldwide. In peanut (Arachis hypogaea L.), these toxic and carcinogenic aflatoxins are mainly produced by Aspergillus flavus Link and A. parasiticus Speare. The use of RNA interference (RNAi) is a promising method to reduce or prevent the accumulation of aflatoxin in peanut seed. In this study, we performed high-throughput sequencing of small RNA populations in a control line and in two transformed peanut lines that expressed an inverted repeat targeting five genes involved in the aflatoxin-biosynthesis pathway and that showed up to 100% less aflatoxin B1 than the controls. The objective was to determine the putative involvement of the small RNA populations in aflatoxin reduction. In total, 41 known microRNA (miRNA) families and many novel miRNAs were identified. Among those, 89 known and 10 novel miRNAs were differentially expressed in the transformed lines. We furthermore found two small interfering RNAs derived from the inverted repeat, and 39 sRNAs that mapped without mismatches to the genome of A. flavus and were present only in the transformed lines. This information will increase our understanding of the effectiveness of RNAi and enable the possible improvement of the RNAi technology for the control of aflatoxins.


Assuntos
Aflatoxinas/metabolismo , Arachis/genética , RNA de Plantas/genética , Transformação Genética , Sequência de Bases , Cotilédone/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , MicroRNAs/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA , RNA de Plantas/metabolismo
13.
Phytopathology ; 104(1): 75-85, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23883157

RESUMO

Aspergillus flavus is the major producer of carcinogenic aflatoxins worldwide in crops. Populations of A. flavus are characterized by high genetic variation and the source of this variation is likely sexual reproduction. The fungus is heterothallic and laboratory crosses produce ascospore-bearing ascocarps embedded within sclerotia. However, the capacity for sexual reproduction in sclerotia naturally formed in crops has not been examined. Corn was grown for 3 years under different levels of drought stress at Shellman, GA, and sclerotia were recovered from 146 ears (0.6% of ears). Sclerotia of A. flavus L strain were dominant in 2010 and 2011 and sclerotia of A. flavus S strain were dominant in 2012. The incidence of S strain sclerotia in corn ears increased with decreasing water availability. Ascocarps were not detected in sclerotia at harvest but incubation of sclerotia on the surface of nonsterile soil in the laboratory resulted in the formation of viable ascospores in A. flavus L and S strains and in homothallic A. alliaceus. Ascospores were produced by section Flavi species in 6.1% of the 6,022 sclerotia (18 of 84 ears) in 2010, 0.1% of the 2,846 sclerotia (3 of 36 ears) in 2011, and 0.5% of the 3,106 sclerotia (5 of 26 ears) in 2012. For sexual reproduction to occur under field conditions, sclerotia may require an additional incubation period on soil following dispersal at crop harvest.


Assuntos
Aflatoxinas/metabolismo , Aspergillus flavus/fisiologia , Doenças das Plantas/microbiologia , Esporos Fúngicos/fisiologia , Zea mays/microbiologia , Aflatoxinas/análise , Irrigação Agrícola , Aspergillus flavus/química , Aspergillus flavus/citologia , Aspergillus flavus/genética , Secas , Chuva , Reprodução , Esporos Fúngicos/química , Esporos Fúngicos/citologia , Esporos Fúngicos/genética , Temperatura
14.
J Environ Qual ; 41(4): 973-89, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22751040

RESUMO

Biochar has been heralded as an amendment to revitalize degraded soils, improve soil carbon sequestration, increase agronomic productivity, and enter into future carbon trading markets. However, scientific and economic technicalties may limit the ability of biochar to consistently deliver on these expectations. Past research has demonstrated that biochar is part of the black carbon continuum with variable properties due to the net result of production (e.g., feedstock and pyrolysis conditions) and postproduction factors (storage or activation). Therefore, biochar is not a single entity but rather spans a wide range of black carbon forms. Biochar is black carbon, but not all black carbon is biochar. Agronomic benefits arising from biochar additions to degraded soils have been emphasized, but negligible and negative agronomic effects have also been reported. Fifty percent of the reviewed studies reported yield increases after black carbon or biochar additions, with the remainder of the studies reporting alarming decreases to no significant differences. Hardwood biochar (black carbon) produced by traditional methods (kilns or soil pits) possessed the most consistent yield increases when added to soils. The universality of this conclusion requires further evaluation due to the highly skewed feedstock preferences within existing studies. With global population expanding while the amount of arable land remains limited, restoring soil quality to nonproductive soils could be key to meeting future global food production, food security, and energy supplies; biochar may play a role in this endeavor. Biochar economics are often marginally viable and are tightly tied to the assumed duration of agronomic benefits. Further research is needed to determine the conditions under which biochar can provide economic and agronomic benefits and to elucidate the fundamental mechanisms responsible for these benefits.


Assuntos
Agricultura/métodos , Carbono/química , Solo , Agricultura/economia , Produtos Agrícolas/crescimento & desenvolvimento , Meio Ambiente , Poluentes Ambientais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...