Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Hepatol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002639

RESUMO

BACKGROUND AND AIMS: Liver macrophages fulfill various homeostatic functions and represent an essential line of defense against pathogenic insults. However, it remains unclear whether a history of infectious disease in the liver instructs long-term alterations to the liver macrophage compartment. METHODS: We utilized a curable model of parasitic infection invoked by the protozoan parasite Trypanosoma brucei brucei to investigate whether infection history can durably reshape hepatic macrophage identity and function. Employing a combination of fate mapping, single cell CITE-sequencing, single nuclei multiome analysis, epigenomic analysis, and functional assays, we studied the alterations to the liver macrophage compartment during and after the resolution of infection. RESULTS: We show that T. b. brucei infection alters the composition of liver-resident macrophages, leading to the infiltration of monocytes that differentiate into various infection-associated macrophage populations with divergent transcriptomic profiles. Whereas infection-associated macrophages disappear post-resolution of infection, monocyte-derived macrophages engraft in the liver, assume a Kupffer cell (KC)-like profile and co-exist with embryonic KCs in the long-term. Remarkably, the prior exposure to infection imprinted an altered transcriptional program on post-resolution KCs that was underpinned by an epigenetic remodeling of KC chromatin landscapes and a shift in KC ontogeny, along with transcriptional and epigenetic alterations in their niche cells. This reprogramming altered KC functions and was associated with increased resilience to a subsequent bacterial infection. CONCLUSION: Our study demonstrates that a prior exposure to a parasitic infection induces trained immunity in KCs, reshaping their identity and function in the long-term. IMPACT AND IMPLICATIONS: Although the liver is frequently affected during infections, and despite housing a major population of resident macrophages known as Kupffer cells (KCs), it is currently unclear whether infections can durably alter KCs and their niche cells. Our study provides a comprehensive investigation into the long-term impact of a prior, cured parasitic infection, unveiling long-lasting ontogenic, epigenetic, transcriptomic and functional changes to KCs as well as KC niche cells, which may contribute to KC remodeling. Our data suggest that infection history may continuously reprogram KCs throughout life with potential implications for subsequent disease susceptibility in the liver, influencing preventive and therapeutic approaches.

2.
Nature ; 631(8019): 207-215, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38926576

RESUMO

Pyroptosis is a lytic cell death mode that helps limit the spread of infections and is also linked to pathology in sterile inflammatory diseases and autoimmune diseases1-4. During pyroptosis, inflammasome activation and the engagement of caspase-1 lead to cell death, along with the maturation and secretion of the inflammatory cytokine interleukin-1ß (IL-1ß). The dominant effect of IL-1ß in promoting tissue inflammation has clouded the potential influence of other factors released from pyroptotic cells. Here, using a system in which macrophages are induced to undergo pyroptosis without IL-1ß or IL-1α release (denoted Pyro-1), we identify unexpected beneficial effects of the Pyro-1 secretome. First, we noted that the Pyro-1 supernatants upregulated gene signatures linked to migration, cellular proliferation and wound healing. Consistent with this gene signature, Pyro-1 supernatants boosted migration of primary fibroblasts and macrophages, and promoted faster wound closure in vitro and improved tissue repair in vivo. In mechanistic studies, lipidomics and metabolomics of the Pyro-1 supernatants identified the presence of both oxylipins and metabolites, linking them to pro-wound-healing effects. Focusing specifically on the oxylipin prostaglandin E2 (PGE2), we find that its synthesis is induced de novo during pyroptosis, downstream of caspase-1 activation and cyclooxygenase-2 activity; further, PGE2 synthesis occurs late in pyroptosis, with its release dependent on gasdermin D pores opened during pyroptosis. As for the pyroptotic metabolites, they link to immune cell infiltration into the wounds, and polarization to CD301+ macrophages. Collectively, these data advance the concept that the pyroptotic secretome possesses oxylipins and metabolites with tissue repair properties that may be harnessed therapeutically.


Assuntos
Macrófagos , Oxilipinas , Piroptose , Secretoma , Cicatrização , Animais , Feminino , Humanos , Camundongos , Caspase 1/metabolismo , Movimento Celular , Proliferação de Células , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/biossíntese , Dinoprostona/metabolismo , Fibroblastos/metabolismo , Fibroblastos/citologia , Gasderminas/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta , Lipidômica , Macrófagos/metabolismo , Macrófagos/citologia , Camundongos Endogâmicos C57BL , Oxilipinas/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Secretoma/metabolismo , Cicatrização/fisiologia
3.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38803236

RESUMO

Neutrophils can be beneficial or deleterious during tuberculosis (TB). Based on the expression of MHC-II and programmed death ligand 1 (PD-L1), we distinguished two functionally and transcriptionally distinct neutrophil subsets in the lungs of mice infected with mycobacteria. Inflammatory [MHC-II-, PD-L1lo] neutrophils produced inflammasome-dependent IL-1ß in the lungs in response to virulent mycobacteria and "accelerated" deleterious inflammation, which was highly exacerbated in IFN-γR-/- mice. Regulatory [MHC-II+, PD-L1hi] neutrophils "brake" inflammation by suppressing T-cell proliferation and IFN-γ production. Such beneficial regulation, which depends on PD-L1, is controlled by IFN-γR signaling in neutrophils. The hypervirulent HN878 strain from the Beijing genotype curbed PD-L1 expression by regulatory neutrophils, abolishing the braking function and driving deleterious hyperinflammation in the lungs. These findings add a layer of complexity to the roles played by neutrophils in TB and may explain the reactivation of this disease observed in cancer patients treated with anti-PD-L1.


Assuntos
Antígeno B7-H1 , Inflamação , Interleucina-1beta , Pulmão , Neutrófilos , Tuberculose , Animais , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Neutrófilos/imunologia , Neutrófilos/metabolismo , Camundongos , Interleucina-1beta/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Tuberculose/imunologia , Tuberculose/microbiologia , Tuberculose/metabolismo , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/imunologia , Modelos Animais de Doenças , Feminino , Humanos
4.
Front Immunol ; 15: 1373224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633264

RESUMO

Cystinosis is a rare autosomal recessive disorder caused by mutations in the CTNS gene that encodes cystinosin, a ubiquitous lysosomal cystine/H+ antiporter. The hallmark of the disease is progressive accumulation of cystine and cystine crystals in virtually all tissues. At the kidney level, human cystinosis is characterized by the development of renal Fanconi syndrome and progressive glomerular and interstitial damage leading to end-stage kidney disease in the second or third decade of life. The exact molecular mechanisms involved in the pathogenesis of renal disease in cystinosis are incompletely elucidated. We have previously shown upregulation of NLRP2 in human cystinotic proximal tubular epithelial cells and its role in promoting inflammatory and profibrotic responses. Herein, we have investigated the role of NLRP2 in vivo using a mouse model of cystinosis in which we have confirmed upregulation of Nlrp2 in the renal parenchyma. Our studies show that double knock out Ctns-/- Nlrp2-/- animals exhibit delayed development of Fanconi syndrome and kidney tissue damage. Specifically, we observed at 4-6 months of age that animals had less glucosuria and calciuria and markedly preserved renal tissue, as assessed by significantly lower levels of inflammatory cell infiltration, tubular atrophy, and interstitial fibrosis. Also, the mRNA expression of some inflammatory mediators (Cxcl1 and Saa1) and the rate of apoptosis were significantly decreased in 4-6-month old kidneys harvested from Ctns-/- Nlrp2-/- mice compared to those obtained from Ctns-/-mice. At 12-14 months of age, renal histological was markedly altered in both genetic models, although double KO animals had lower degree of polyuria and low molecular weight proteinuria and decreased mRNA expression levels of Il6 and Mcp1. Altogether, these data indicate that Nlrp2 is a potential pharmacological target for delaying progression of kidney disease in cystinosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Cistinose , Nefropatias , Animais , Cistina/metabolismo , Cistinose/genética , Cistinose/metabolismo , Cistinose/patologia , Rim/patologia , Nefropatias/patologia , RNA Mensageiro , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Modelos Animais de Doenças , Camundongos
5.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38519142

RESUMO

The NLRP3 inflammasome plays a central role in various human diseases. Despite significant interest, most clinical-grade NLRP3 inhibitors are derived from sulfonylurea inhibitor CRID3 (also called MCC950). Here, we describe a novel chemical class of NLRP3-inhibiting compounds (NIC) that exhibit potent and selective NLRP3 inflammasome inhibition in human monocytes and mouse macrophages. BRET assays demonstrate that they physically interact with NLRP3. Structural modeling further reveals they occupy the same binding site of CRID3 but in a critically different conformation. Furthermore, we show that NIC-11 and NIC-12 lack the off-target activity of CRID3 against the enzymatic activity of carbonic anhydrases I and II. NIC-12 selectively reduces circulating IL-1ß levels in the LPS-endotoxemia model in mice and inhibits NLRP3 inflammasome activation in CAPS patient monocytes and mouse macrophages with about tenfold increased potency compared with CRID3. Altogether, this study unveils a new chemical class of highly potent and selective NLRP3-targeted inhibitors with a well-defined molecular mechanism to complement existing CRID3-based NLRP3 inhibitors in pharmacological studies and serve as novel chemical leads for the development of NLRP3-targeted therapies.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Sulfonamidas/farmacologia
6.
Front Immunol ; 15: 1323409, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352874

RESUMO

Background: Alzheimer's disease (AD) is the most common neurodegenerative disorder affecting memory and cognition. The disease is accompanied by an abnormal deposition of ß-amyloid plaques in the brain that contributes to neurodegeneration and is known to induce glial inflammation. Studies in the APP/PS1 mouse model of ß-amyloid-induced neuropathology have suggested a role for inflammasome activation in ß-amyloid-induced neuroinflammation and neuropathology. Methods: Here, we evaluated the in vivo role of microglia-selective and full body inflammasome signalling in several mouse models of ß-amyloid-induced AD neuropathology. Results: Microglia-specific deletion of the inflammasome regulator A20 and inflammasome effector protease caspase-1 in the AppNL-G-F and APP/PS1 models failed to identify a prominent role for microglial inflammasome signalling in ß-amyloid-induced neuropathology. Moreover, global inflammasome inactivation through respectively full body deletion of caspases 1 and 11 in AppNL-G-F mice and Nlrp3 deletion in APP/PS1 mice also failed to modulate amyloid pathology and disease progression. In agreement, single-cell RNA sequencing did not reveal an important role for Nlrp3 signalling in driving microglial activation and the transition into disease-associated states, both during homeostasis and upon amyloid pathology. Conclusion: Collectively, these results question a generalizable role for inflammasome activation in preclinical amyloid-only models of neuroinflammation.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/patologia , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Doenças Neuroinflamatórias , Camundongos Transgênicos , Amiloide , Proteínas Amiloidogênicas
7.
Nat Rev Drug Discov ; 23(1): 43-66, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38030687

RESUMO

Diseases associated with chronic inflammation constitute a major health burden across the world. As central instigators of the inflammatory response to infection and tissue damage, inflammasomes - and the NACHT, LRR and PYD domain-containing protein 3 (NLRP3) inflammasome in particular - have emerged as key regulators in diverse rheumatic, metabolic and neurodegenerative diseases. Similarly to other inflammasome sensors, NLRP3 assembles a cytosolic innate immune complex that activates the cysteine protease caspase-1, which in turn cleaves gasdermin D (GSDMD) to induce pyroptosis, a regulated mode of lytic cell death. Pyroptosis is highly inflammatory, partly because of the concomitant extracellular release of the inflammasome-dependent cytokines IL-1ß and IL-18 along with a myriad of additional danger signals and intracellular antigens. Here, we discuss how NLRP3 and downstream inflammasome effectors such as GSDMD, apoptosis-associated speck-like protein containing a CARD (ASC) and nerve injury-induced protein 1 (NINJ1) have gained significant traction as therapeutic targets. We highlight the recent progress in developing small-molecule and biologic inhibitors that are advancing into the clinic and serving to harness the broad therapeutic potential of modulating the NLRP3 inflammasome.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Citocinas/metabolismo , Fatores de Crescimento Neural , Moléculas de Adesão Celular Neuronais
8.
Front Immunol ; 14: 1272639, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090573

RESUMO

Background: Autoinflammation with infantile enterocolitis (AIFEC) is an often fatal disease caused by gain-of-function mutations in the NLRC4 inflammasome. This inflammasomopathy is characterized by macrophage activation syndrome (MAS)-like episodes as well as neonatal-onset enterocolitis. Although elevated IL-18 levels were suggested to take part in driving AIFEC pathology, the triggers for IL-18 production and its ensuing pathogenic effects in these patients are incompletely understood. Methods: Here, we developed and characterized a novel genetic mouse model expressing a murine version of the AIFEC-associated NLRC4V341A mutation from its endogenous Nlrc4 genomic locus. Results: NLRC4V341A expression in mice recapitulated increased circulating IL-18 levels as observed in AIFEC patients. Housing NLRC4V341A-expressing mice in germfree (GF) conditions showed that these systemic IL-18 levels were independent of the microbiota, and unmasked an additional IL-18-inducing effect of NLRC4V341A expression in the intestines. Remarkably, elevated IL-18 levels did not provoke detectable intestinal pathologies in NLRC4V341A-expressing mice, even not upon genetically ablating IL-18 binding protein (IL-18BP), which is an endogenous IL-18 inhibitor that has been used therapeutically in AIFEC. In addition, NLRC4V341A expression did not alter susceptibility to the NLRC4-activating gastrointestinal pathogens Salmonella Typhimurium and Citrobacter rodentium. Conclusion: As observed in AIFEC patients, mice expressing a murine NLRC4V341A mutant show elevated systemic IL-18 levels, suggesting that the molecular mechanisms by which this NLRC4V341A mutant induces excessive IL-18 production are conserved between humans and mice. However, while our GF and infection experiments argue against a role for commensal or pathogenic bacteria, identifying the triggers and mechanisms that synergize with IL-18 to drive NLRC4V341A-associated pathologies will require further research in this NLRC4V341A mouse model.


Assuntos
Enterocolite , Síndrome de Ativação Macrofágica , Humanos , Camundongos , Recém-Nascido , Animais , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Mutação , Síndrome de Ativação Macrofágica/genética , Enterocolite/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo
9.
Semin Immunol ; 70: 101849, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37939552

RESUMO

Neutrophils are among the most abundant immune cells, representing about 50%- 70% of all circulating leukocytes in humans. Neutrophils rapidly infiltrate inflamed tissues and play an essential role in host defense against infections. They exert microbicidal activity through a variety of specialized effector mechanisms, including phagocytosis, production of reactive oxygen species, degranulation and release of secretory vesicles containing broad-spectrum antimicrobial factors. In addition to their homeostatic turnover by apoptosis, recent studies have revealed the mechanisms by which neutrophils undergo various forms of regulated cell death. In this review, we will discuss the different modes of regulated cell death that have been described in neutrophils, with a particular emphasis on the current understanding of neutrophil pyroptosis and its role in infections and autoinflammation.


Assuntos
Neutrófilos , Piroptose , Humanos , Fagocitose/fisiologia , Apoptose/fisiologia
10.
Sci Rep ; 13(1): 17992, 2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865713

RESUMO

A20 serves as a critical brake on NF-κB-dependent inflammation. In humans, polymorphisms in or near the TNFAIP3/A20 gene have been linked to various inflammatory disorders, including systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Experimental gene knockout studies in mice have confirmed A20 as a susceptibility gene for SLE and RA. Here, we examine the significance of protein citrullination and NET formation in the autoimmune pathology of A20 mutant mice because autoimmunity directed against citrullinated antigens released by neutrophil extracellular traps (NETs) is central to the pathogenesis of RA and SLE. Furthermore, genetic variants impairing the deubiquitinase (DUB) function of A20 have been shown to contribute to autoimmune susceptibility. Our findings demonstrate that genetic disruption of A20 DUB function in A20 C103R knockin mice does not result in autoimmune pathology. Moreover, we show that PAD4 deficiency, which abolishes protein citrullination and NET formation, does not prevent the development of autoimmunity in A20 deficient mice. Collectively, these findings provide experimental confirmation that PAD4-dependent protein citrullination and NET formation do not serve as pathogenic mechanisms in the development of RA and SLE pathology in mice with A20 mutations.


Assuntos
Artrite Reumatoide , Armadilhas Extracelulares , Lúpus Eritematoso Sistêmico , Humanos , Animais , Camundongos , Citrulinação , Artrite Reumatoide/metabolismo , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Inflamação/metabolismo , Autoimunidade/genética , Armadilhas Extracelulares/metabolismo
11.
J Allergy Clin Immunol ; 152(1): 230-243, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36822481

RESUMO

BACKGROUND: Familial Mediterranean fever (FMF), caused by mutations in the pyrin-encoding MEFV gene, is characterized by uncontrolled caspase-1 activation and IL-1ß secretion. A similar mechanism drives inflammation in cryopyrin-associated periodic fever syndrome (CAPS) caused by mutations in NLRP3. CAPS and FMF, however, result in largely different clinical manifestations, pointing to additional, autoinflammatory pathways involved in FMF. Another hallmark of FMF is extraordinarily high expression of S100A8 and S100A9. These alarmins are ligands of Toll-like receptor 4 and amplifiers of inflammation. However, the relevance of this inflammatory pathway for the pathogenesis of FMF is unknown. OBJECTIVE: This study investigated whether mutations in pyrin result in specific secretion of S100A8/A9 alarmins through gasdermin D pores' amplifying FMF pathology. METHODS: S100A8/A9 levels in FMF patients were quantified by enzyme-linked immunosorbent assay. In vitro models with knockout cell lines and specific protein inhibitors were used to unravel the S100A8/A9 secretion mechanism. The impact of S100A8/A9 to the pathophysiology of FMF was analyzed with FMF (MEFVV726A/V726A) and S100A9-/- mouse models. Pyrin-S100A8/A9 interaction was investigated by coimmunoprecipitation, immunofluorescence, and enzyme-linked immunosorbent assay studies. RESULTS: The S100A8/A9 complexes directly interacted with pyrin. Knocking out pyrin, caspase-1, or gasdermin D inhibited the secretion of these S100 alarmins. Inflammatory S100A8/A9 dimers were inactivated by tetramer formation. Blocking this inactivation by targeted S100A9 deletion in a murine FMF model demonstrated the relevance of this novel autoinflammatory pathway in FMF. CONCLUSION: This is the first proof that members of the S100 alarmin family are released in a pyrin/caspase-1/gasdermin D-dependent pathway and directly drive autoinflammation in vivo.


Assuntos
Síndromes Periódicas Associadas à Criopirina , Febre Familiar do Mediterrâneo , Animais , Camundongos , Alarminas , Calgranulina A/genética , Caspases/metabolismo , Síndromes Periódicas Associadas à Criopirina/genética , Febre Familiar do Mediterrâneo/genética , Gasderminas , Inflamação , Pirina/genética
12.
Curr Biol ; 33(1): R33-R36, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36626862

RESUMO

A new study reveals how Mycobacterium tuberculosis evades anti-bacterial immunity by modifying the plasma membrane phospholipid composition of infected macrophages, thereby blocking the host's pyroptosis response and supporting chronic infection.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Inflamassomos/metabolismo , Tuberculose/metabolismo , Tuberculose/microbiologia , Macrófagos/metabolismo
14.
EMBO Rep ; 23(10): e54277, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35899491

RESUMO

Neutrophils are the most prevalent immune cells in circulation, but the repertoire of canonical inflammasomes in neutrophils and their respective involvement in neutrophil IL-1ß secretion and neutrophil cell death remain unclear. Here, we show that neutrophil-targeted expression of the disease-associated gain-of-function Nlrp3A350V mutant suffices for systemic autoinflammatory disease and tissue pathology in vivo. We confirm the activity of the canonical NLRP3 and NLRC4 inflammasomes in neutrophils, and further show that the NLRP1b, Pyrin and AIM2 inflammasomes also promote maturation and secretion of interleukin (IL)-1ß in cultured bone marrow neutrophils. Notably, all tested canonical inflammasomes promote GSDMD cleavage in neutrophils, and canonical inflammasome-induced pyroptosis and secretion of mature IL-1ß are blunted in GSDMD-knockout neutrophils. In contrast, GSDMD is dispensable for PMA-induced NETosis. We also show that Salmonella Typhimurium-induced pyroptosis is markedly increased in Nox2/Gp91Phox -deficient neutrophils that lack NADPH oxidase activity and are defective in PMA-induced NETosis. In conclusion, we establish the canonical inflammasome repertoire in neutrophils and identify differential roles for GSDMD and the NADPH complex in canonical inflammasome-induced neutrophil pyroptosis and mitogen-induced NETosis, respectively.


Assuntos
Armadilhas Extracelulares , Inflamassomos , Neutrófilos , Proteínas de Ligação a Fosfato , Proteínas Citotóxicas Formadoras de Poros , Piroptose , Animais , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitógenos/metabolismo , NADP/metabolismo , NADPH Oxidases/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neutrófilos/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Pirina/metabolismo
15.
PLoS Pathog ; 18(7): e1010305, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35849616

RESUMO

Multiple regulated neutrophil cell death programs contribute to host defense against infections. However, despite expressing all necessary inflammasome components, neutrophils are thought to be generally defective in Caspase-1-dependent pyroptosis. By screening different bacterial species, we found that several Pseudomonas aeruginosa (P. aeruginosa) strains trigger Caspase-1-dependent pyroptosis in human and murine neutrophils. Notably, deletion of Exotoxins U or S in P. aeruginosa enhanced neutrophil death to Caspase-1-dependent pyroptosis, suggesting that these exotoxins interfere with this pathway. Mechanistically, P. aeruginosa Flagellin activates the NLRC4 inflammasome, which supports Caspase-1-driven interleukin (IL)-1ß secretion and Gasdermin D (GSDMD)-dependent neutrophil pyroptosis. Furthermore, P. aeruginosa-induced GSDMD activation triggers Calcium-dependent and Peptidyl Arginine Deaminase-4-driven histone citrullination and translocation of neutrophil DNA into the cell cytosol without inducing extracellular Neutrophil Extracellular Traps. Finally, we show that neutrophil Caspase-1 contributes to IL-1ß production and susceptibility to pyroptosis-inducing P. aeruginosa strains in vivo. Overall, we demonstrate that neutrophils are not universally resistant for Caspase-1-dependent pyroptosis.


Assuntos
Inflamassomos , Piroptose , Animais , Proteínas Reguladoras de Apoptose/genética , Caspase 1/metabolismo , Exotoxinas/metabolismo , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/microbiologia , Pseudomonas aeruginosa/metabolismo
16.
Mol Aspects Med ; 88: 101100, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35696786

RESUMO

Two decades of inflammasome research has led to a vast body of knowledge on the complex regulatory mechanisms and pathological roles of canonical and non-canonical inflammasome activation in a plethora of research models of primarily rodent origin. More recently, the field has made notable progress in characterizing human-specific inflammasomes and their regulation mechanisms, including an expansion of inflammasome biology to adaptive immune cells. These exciting developments in basic research have been accompanied by potentially transformative results from large clinical trials and translational efforts to develop inflammasome-targeted small molecule inhibitors for therapeutic use. Here, we will discuss recent findings in the field with a specific emphasis on activation mechanisms of human inflammasomes and their potential role in auto-inflammatory, metabolic and neoplastic diseases.


Assuntos
Inflamassomos , Neoplasias , Humanos , Inflamassomos/metabolismo , Inflamação
17.
Sci Adv ; 8(9): eabj7293, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35235356

RESUMO

Interleukin-1α (IL-1α) and IL-1ß are inflammatory cytokines with important roles in health and disease. They trigger the same receptor and elicit comparable cellular responses but, for poorly understood reasons, are not redundant in vivo. Here, we decoupled IL-1α and IL-1ß functions that drive protective responses against invasive infection with group A Streptococcus. IL-1ß was essential for pathogen clearance, hence resistance to infection, by inducing granulocyte colony-stimulating factor at the infection site and establishing emergency granulopoiesis. In contrast, IL-1α governed reprogramming of liver metabolic pathways associated with tolerance to infection. The IL-1α-dominated hepatic regulation corresponded to high IL-1α levels in the liver during infection. Conversely, IL-1ß was critical for the regulation of the spleen transcriptome, which correlated with ample IL-1ß expression in this tissue. The results identify distinct and organ-specific roles of IL-1α versus IL-1ß and implicate spatial restriction of their expression and bioavailability during infection as the underlying mechanism.


Assuntos
Interleucina-1alfa , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo
18.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34996874

RESUMO

Lethal toxin (LeTx)-mediated killing of myeloid cells is essential for Bacillus anthracis, the causative agent of anthrax, to establish systemic infection and induce lethal anthrax. The "LeTx-sensitive" NLRP1b inflammasome of BALB/c and 129S macrophages swiftly responds to LeTx intoxication with pyroptosis and secretion of interleukin (IL)-1ß. However, human NLRP1 is nonresponsive to LeTx, prompting us to investigate B. anthracis host-pathogen interactions in C57BL/6J (B6) macrophages and mice that also lack a LeTx-sensitive Nlrp1b allele. Unexpectedly, we found that LeTx intoxication and live B. anthracis infection of B6 macrophages elicited robust secretion of IL-1ß, which critically relied on the NLRP3 inflammasome. TNF signaling through both TNF receptor 1 (TNF-R1) and TNF-R2 were required for B. anthracis-induced NLRP3 inflammasome activation, which was further controlled by RIPK1 kinase activity and LeTx-mediated proteolytic inactivation of MAP kinase signaling. In addition to activating the NLRP3 inflammasome, LeTx-induced MAPKK inactivation and TNF production sensitized B. anthracis-infected macrophages to robust RIPK1- and caspase-8-dependent apoptosis. In agreement, purified LeTx triggered RIPK1 kinase activity- and caspase-8-dependent apoptosis only in macrophages primed with TNF or following engagement of TRIF-dependent Toll-like receptors. Consistently, genetic and pharmacological inhibition of RIPK1 inhibited NLRP3 inflammasome activation and apoptosis of LeTx-intoxicated and B. anthracis-infected macrophages. Caspase-8/RIPK3-deficient mice were significantly protected from B. anthracis-induced lethality, demonstrating the in vivo pathophysiological relevance of this cytotoxic mechanism. Collectively, these results establish TNF- and RIPK1 kinase activity-dependent NLRP3 inflammasome activation and macrophage apoptosis as key host-pathogen mechanisms in lethal anthrax.


Assuntos
Apoptose , Bacillus anthracis/metabolismo , Caspase 8/metabolismo , Inflamassomos/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Antraz , Caspase 8/genética , Interações Hospedeiro-Patógeno/fisiologia , Inflamassomos/genética , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Piroptose , Proteína Serina-Treonina Quinases de Interação com Receptores , Transdução de Sinais
19.
Cell Res ; 32(3): 227-228, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34934194
20.
Nanoscale ; 13(13): 6592-6604, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33885539

RESUMO

Inflammasomes are multi-protein complexes that guard against cellular stress and microbial infections. Inflammasome activation studies frequently require delivery of pathogen-derived virulence factors into the cytosol of macrophages and other innate immune cells. This is a challenging requirement since primary macrophages are difficult-to-transfect, especially when it comes to the intracellular delivery of proteins. Here, we report on the use of nanoparticle-sensitized photoporation as a promising upcoming intracellular delivery technology for delivering proteins of various molecular weights into the cytosol of primary macrophages. While 60-70 nm gold nanoparticles are the most commonly used sensitizing nanoparticles for photoporation, here we find that 0.5 µm iron oxide nanoparticles perform markedly better on primary macrophages. We demonstrate that LFn-FlaA or lipopolysaccharides can be delivered in primary macrophages resulting in activation of the NLRC4 or the non-canonical inflammasome, respectively. We furthermore show that photoporation can be used for targeted delivery of these toxins into selected cells, opening up the possibility to study the interaction between inflammasome activated cells and surrounding healthy cells. Taken together, these results show that nanoparticle-sensitized photoporation is very well suited to deliver pathogenic virulence factors in primary macrophages, thus constituting an effective new enabling technology for inflammasome activation studies.


Assuntos
Inflamassomos , Nanopartículas Metálicas , Ouro , Lipopolissacarídeos , Macrófagos , Nanopartículas Metálicas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...