Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38768755

RESUMO

Cell therapies such as genetically modified T cells have emerged as a promising and viable treatment for hematologic cancers and are being aggressively pursued for a wide range of diseases and conditions that were previously difficult to treat or had no cure. The process development requires genetic modifications to T cells to express a receptor (engineered T cell receptor (eTCR)) of specific binding qualities to the desired target. Protein reagents utilized during the cell therapy manufacturing process, to facilitate these genetic modifications, are often present as process-related impurities at residual levels in the final drug product and can represent a potential immunogenicity risk upon infusion. This manuscript presents a framework for the qualification of an assay for assessing the immunogenicity risk of AA6 and Cas9 residuals. The same framework applies for other residuals; however, AAV6 and Cas9 were selected as they were residuals from the manufacturing of an engineered T cell receptor cellular product in development. The manuscript: 1) elucidates theoretical risks, 2) summarizes analytical data collected during process development, 3) describes the qualification of an in vitro human PBMC cytokine release assay to assess immunogenicity risk from cellular product associated process residuals; 4) identifies a multiplexed inflammatory innate and adaptive cytokine panel with pre-defined criteria using relevant positive controls; and 5) discusses qualification challenges and potential solutions for establishing meaningful thresholds. The assessment is not only relevant to establishing safe exposure levels of these residuals but also in guiding risk assessment and CMC strategy during the conduct of clinical trials.

2.
J Immunother Cancer ; 11(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37344101

RESUMO

BACKGROUND: Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan-dioxygenase (TDO) are enzymes catabolizing the essential amino acid tryptophan into kynurenine. Expression of these enzymes is frequently observed in advanced-stage cancers and is associated with poor disease prognosis and immune suppression. Mechanistically, the respective roles of tryptophan shortage and kynurenine production in suppressing immunity remain unclear. Kynurenine was proposed as an endogenous ligand for the aryl hydrocarbon receptor (AHR), which can regulate inflammation and immunity. However, controversy remains regarding the role of AHR in IDO1/TDO-mediated immune suppression, as well as the involvement of kynurenine. In this study, we aimed to clarify the link between IDO1/TDO expression, AHR pathway activation and immune suppression. METHODS: AHR expression and activation was analyzed by RT-qPCR and western blot analysis in cells engineered to express IDO1/TDO, or cultured in medium mimicking tryptophan catabolism by IDO1/TDO. In vitro differentiation of naïve CD4+ T cells into regulatory T cells (Tregs) was compared in T cells isolated from mice bearing different Ahr alleles or a knockout of Ahr, and cultured in medium with or without tryptophan and kynurenine. RESULTS: We confirmed that IDO1/TDO expression activated AHR in HEK-293-E cells, as measured by the induction of AHR target genes. Unexpectedly, AHR was also overexpressed on IDO1/TDO expression. AHR overexpression did not depend on kynurenine but was triggered by tryptophan deprivation. Multiple human tumor cell lines overexpressed AHR on tryptophan deprivation. AHR overexpression was not dependent on general control non-derepressible 2 (GCN2), and strongly sensitized the AHR pathway. As a result, kynurenine and other tryptophan catabolites, which are weak AHR agonists in normal conditions, strongly induced AHR target genes in tryptophan-depleted conditions. Tryptophan depletion also increased kynurenine uptake by increasing SLC7A5 (LAT1) expression in a GCN2-dependent manner. Tryptophan deprivation potentiated Treg differentiation from naïve CD4+ T cells isolated from mice bearing an AHR allele of weak affinity similar to the human AHR. CONCLUSIONS: Tryptophan deprivation sensitizes the AHR pathway by inducing AHR overexpression and increasing cellular kynurenine uptake. As a result, tryptophan catabolites such as kynurenine more potently activate AHR, and Treg differentiation is promoted. Our results propose a molecular explanation for the combined roles of tryptophan deprivation and kynurenine production in mediating IDO1/TDO-induced immune suppression.


Assuntos
Cinurenina , Triptofano , Humanos , Camundongos , Animais , Cinurenina/metabolismo , Linfócitos T Reguladores/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Células HEK293
3.
PLoS One ; 10(4): e0122517, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25853464

RESUMO

Loss of expression of surface antigens represents a significant problem for cancer immunotherapy. Microphthalmia-associated transcription factor (MITF-M) regulates melanocyte fate by driving expression of many differentiation genes, whose protein products can be recognized by cytolytic T lymphocytes. We previously reported that interleukin-1ß (IL-1ß) can downregulate MITF-M levels. Here we show that downregulation of MITF-M expression by IL-1ß was paralleled by an upregulation of miR-155 expression in four melanoma lines. We confirmed that miR-155 was able to target endogenous MITF-M in melanoma cells and demonstrated a role for miR-155 in the IL-1ß-induced repression of MITF-M by using an antagomiR. Notably, we also observed a strong negative correlation between MITF-M and miR-155 levels in a mouse model of melanoma. Taken together, our results indicate that MITF-M downregulation by inflammatory stimuli might be partly due to miR-155 upregulation. This could represent a novel mechanism of melanoma immune escape in an inflammatory microenvironment.


Assuntos
Interleucina-1beta/genética , Melanoma/genética , MicroRNAs/genética , Fator de Transcrição Associado à Microftalmia/biossíntese , Animais , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoterapia , Interleucina-1beta/metabolismo , Melanoma/patologia , Camundongos , MicroRNAs/biossíntese , Fator de Transcrição Associado à Microftalmia/genética
4.
PLoS One ; 6(9): e25247, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21957483

RESUMO

Hoxa1 belongs to the Hox family of homeodomain transcription factors involved in patterning embryonic territories and governing organogenetic processes. In addition to its developmental functions, Hoxa1 has been shown to be an oncogene and to be overexpressed in the mammary gland in response to a deregulation of the autocrine growth hormone. It has therefore been suggested that Hoxa1 plays a pivotal role in the process linking autocrine growth hormone misregulation and mammary carcinogenesis. Like most Hox proteins, Hoxa1 can interact with Pbx proteins. This interaction relies on a Hox hexapeptidic sequence centred on conserved Tryptophan and Methionine residues. To address the importance of the Hox-Pbx interaction for the oncogenic activity of Hoxa1, we characterized here the properties of a Hoxa1 variant with substituted residues in the hexapeptide and demonstrate that the Hoxa1 mutant lost its ability to stimulate cell proliferation, anchorage-independent cell growth, and loss of contact inhibition. Therefore, the hexapeptide motif of Hoxa1 is required to confer its oncogenic activity, supporting the view that this activity relies on the ability of Hoxa1 to interact with Pbx.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Oncogenes , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Linhagem Celular Tumoral , Proliferação de Células , Inibição de Contato/genética , Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Homeodomínio/genética , Humanos , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Oligopeptídeos/metabolismo , Fator de Transcrição 1 de Leucemia de Células Pré-B , Ligação Proteica , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...