Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1414844, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988631

RESUMO

Background: Border row effects impact the ecosystem functions of intercropping systems, with high direct interactions between neighboring row crops in light, water, and nutrients. However, previous studies have mostly focused on aboveground, whereas the effects of intercropping on the spatial distribution of the root system are poorly understood. Field experiments and planting box experiments were combined to explore the yield, dry matter accumulation, and spatial distribution of root morphological indexes, such as root length density (RLD), root surface area density (RSAD), specific root length (SRL), and root diameter (RD), of maize and peanut and interspecific interactions at different soil depths in an intercropping system. Results: In the field experiments, the yield of intercropped maize significantly increased by 33.45%; however, the yield of intercropped peanut significantly decreased by 13.40%. The land equivalent ratio (LER) of the maize-peanut intercropping system was greater than 1, and the advantage of intercropping was significant. Maize was highly competitive (A = 0.94, CR=1.54), and the yield advantage is mainly attributed to maize. Intercropped maize had higher RLD, RSAD, and SRL than sole maize, and intercropped peanut had lower RLD, RSAD, and SRL than sole peanut. In the interspecific interaction zone, the increase in RLD, RSAD, SRL, and RD of intercropped maize was greater than that of intercropped peanut, and maize showed greater root morphological plasticity than peanut. A random forest model determined that RSAD significantly impacted yield at 15-60 cm, while SRL had a significant impact at 30-60 cm. Structural equation modeling revealed that root morphology indicators had a greater effect on yield at 30-45 cm, with interactions between indicators being more pronounced at this depth. Conclusion: These results show that border-row effects mediate the plasticity of root morphology, which could enhance resource use and increase productivity. Therefore, selecting optimal intercropping species and developing sustainable intercropping production systems is of great significance.

2.
Genomics ; 116(3): 110835, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38521201

RESUMO

Pod length (PL) is one of the major traits determining pod size and yield of peanut. Discovering the quantitative trait loci (QTL) and identifying candidate genes associated with PL are essential for breeding high-yield peanut. In this study, quantitative trait loci sequencing (QTL-seq) was performed using the F2 population constructed by a short-pod variety Tifrunner (Tif) and a long-pod line Lps, and a 0.77 Mb genomic region on chromosome 07 was identified as the candidate region for PL. Then, the candidate region was narrowed to a 265.93 kb region by traditional QTL approach. RNA-seq analysis showed that there were four differentially expressed genes (DEGs) in the candidate region, among which Arahy.PF2L6F (AhCDC48) and Arahy.P4LK2T (AhTAA1) were speculated to be PL-related candidate genes. These results were informative for the elucidation of the underlying regulatory mechanism in peanut pod length and would facilitate further identification of valuable target genes.


Assuntos
Arachis , Locos de Características Quantitativas , Arachis/genética , RNA-Seq , Genes de Plantas
3.
Front Plant Sci ; 14: 1135580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521911

RESUMO

Changes in the canopy microclimate in intercropping systems, particularly in the light environment, have important effects on the physiological characteristics of photosynthesis and yield of crops. Although different row ratio configurations and strip widths of dwarf crops in intercropping systems have important effects on canopy microclimate, little information is available on the effects of intercropping on chlorophyll synthesis and photosynthetic physiological properties of dwarf crops. A 2-year field experiment was conducted in 2019 and 2020, with five treatments: sole maize (SM), sole peanut (SP), four rows of maize intercropping with eight rows of peanut (M4P8), four rows of maize intercropping with four rows of peanut (M4P4), and four rows of maize intercropping with two rows of peanut (M4P2). The results showed that the light transmittance [photosynthetically active radiation (PAR)], photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs) of intercropped peanut canopy were reduced, while the intercellular carbon dioxide concentration (Ci) was increased, compared with SP. In particular, the M4P8 pattern Pn (2-year mean) was reduced by 5.68%, 5.33%, and 5.30%; Tr was reduced by 7.41%, 5.45%, and 5.95%; and Gs was reduced by 8.20%, 6.88%, and 6.46%; and Ci increased by 11.95%, 8.06%, and 9.61% compared to SP, at the flowering needle stage, pod stage, and maturity, respectively. M4P8 improves the content of chlorophyll synthesis precursor and conversion efficiency, which promotes the utilization efficiency of light energy. However, it was significantly reduced in M4P2 and M4P4 treatment. The dry matter accumulation and pod yield of peanut in M4P8 treatment decreased, but the proportion of dry matter distribution in the late growth period was more transferred to pods. The full pod number decreases as the peanut row ratio decreases and increases with year, but there is no significant difference between years. M4P8 has the highest yield and land use efficiency and can be used as a reference row ratio configuration for maize-peanut intercropping to obtain relatively high yield benefits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...