Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
2.
J Transl Med ; 22(1): 389, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671504

RESUMO

BACKGROUND: Myxoid liposarcoma (MLS) displays a distinctive tumor microenvironment and is characterized by the FUS::DDIT3 fusion oncogene, however, the precise functional contributions of these two elements remain enigmatic in tumor development. METHODS: To study the cell-free microenvironment in MLS, we developed an experimental model system based on decellularized patient-derived xenograft tumors. We characterized the cell-free scaffold using mass spectrometry. Subsequently, scaffolds were repopulated using sarcoma cells with or without FUS::DDIT3 expression that were analyzed with histology and RNA sequencing. RESULTS: Characterization of cell-free MLS scaffolds revealed intact structure and a large variation of protein types remaining after decellularization. We demonstrated an optimal culture time of 3 weeks and showed that FUS::DDIT3 expression decreased cell proliferation and scaffold invasiveness. The cell-free MLS microenvironment and FUS::DDIT3 expression both induced biological processes related to cell-to-cell and cell-to-extracellular matrix interactions, as well as chromatin remodeling, immune response, and metabolism. Data indicated that FUS::DDIT3 expression more than the microenvironment determined the pre-adipocytic phenotype that is typical for MLS. CONCLUSIONS: Our experimental approach opens new means to study the tumor microenvironment in detail and our findings suggest that FUS::DDIT3-expressing tumor cells can create their own extracellular niche.


Assuntos
Lipossarcoma Mixoide , Proteínas de Fusão Oncogênica , Proteína FUS de Ligação a RNA , Microambiente Tumoral , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Lipossarcoma Mixoide/patologia , Lipossarcoma Mixoide/metabolismo , Lipossarcoma Mixoide/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteína FUS de Ligação a RNA/metabolismo , Proteína FUS de Ligação a RNA/genética , Alicerces Teciduais/química , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
3.
Cancers (Basel) ; 15(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38136303

RESUMO

Unraveling the complex network between cancer cells and their tumor microenvironment is of clinical importance, as it might allow for the identification of new targets for cancer treatment. Cytokines and growth factors secreted by various cell types present in the tumor microenvironment have the potential to affect the challenging subpopulation of cancer stem cells showing treatment-resistant properties as well as aggressive features. By using various model systems, we investigated how the breast cancer stem cell-initiating growth factor progranulin influenced the secretion of cancer-associated proteins. In monolayer cultures, progranulin induced secretion of several inflammatory-related cytokines, such as interleukin (IL)-6 and -8, in a sortilin-dependent manner. Further, IL-6 increased the cancer stem fraction similarly to progranulin in the breast cancer cell lines MCF7 and MDA-MB-231 monitored by the surrogate mammosphere-forming assay. In a cohort of 63 patient-derived scaffold cultures cultured with breast cancer cells, we observed significant correlations between IL-6 and progranulin secretion, clearly validating the association between IL-6 and progranulin also in human-based microenvironments. In conclusion, the interplay between progranulin and IL-6 highlights a dual breast cancer stem cell-promoting function via sortilin, further supporting sortilin as a highly relevant therapeutic target for aggressive breast cancer.

4.
J Transl Med ; 21(1): 924, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124067

RESUMO

BACKGROUND: The tumor microenvironment clearly influences cancer progressing properties but less is known about how individual cancer microenvironments potentially moderate cancer treatment effects. By cultivating and treating cancer cell lines in patient-derived scaffolds (PDS), the impact of specific characteristics of individual cancer microenvironments can be incorporated in human-like growth modelling and cancer drug treatment testing. METHODS: PDSs from 78 biobanked primary breast cancer samples with known patient outcomes, were prepared and repopulated with donor breast cancer cell lines, followed by treatment with 5-fluorouracil or doxorubicin after cellular adaption to the various microenvironments. Cancer cell responses to the treatments were monitored by RNA-analyses, highlighting changes in gene sets representative for crucial tumor biological processes such as proliferation, cancer stem cell features, differentiation and epithelial-to-mesenchymal transition. RESULTS: The chemotherapy treatments induced distinct gene expression patterns in adapted cancer cells with clusters of similar treatment responses depending on the patient-derived cancer microenvironment used as growth substrate. The doxorubicin treatment displayed a favorable gene signature among surviving cancer cells with low proliferation (MKI67) and pluripotency features (NANOG, POU5F1), in comparison to 5-fluorouracil showing low proliferation but increased pluripotency. Specific gene changes monitored post-treatment were also significantly correlated with clinical data, including histological grade (NANOG), lymph node metastasis (SLUG) and disease-free patient survival (CD44). CONCLUSIONS: This laboratory-based treatment study using patient-derived scaffolds repopulated with cancer cell lines, clearly illustrates that the human cancer microenvironment influences chemotherapy responses. The differences in treatment responses defined by scaffold-cultures have potential prognostic and treatment predictive values.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Microambiente Tumoral , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Linhagem Celular Tumoral
5.
Cancers (Basel) ; 14(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35565301

RESUMO

Breast cancer is a heterogeneous disease in terms of cellular and structural composition, and besides acquired aggressive properties in the cancer cell population, the surrounding tumor microenvironment can affect disease progression and clinical behaviours. To specifically decode the clinical relevance of the cancer promoting effects of individual tumor microenvironments, we performed a comprehensive test of 110 breast cancer samples using a recently established in vivo-like 3D cell culture platform based on patient-derived scaffolds (PDSs). Cell-free PDSs were recellularized with three breast cancer cell lines and adaptation to the different patient-based microenvironments was monitored by quantitative PCR. Substantial variability in gene expression between individual PDS cultures from different patients was observed, as well as between different cell lines. Interestingly, specific gene expression changes in the PDS cultures were significantly linked to prognostic features and clinical information from the original cancer. This link was even more pronounced when ERα-status of cell lines and PDSs matched. The results support that PDSs cultures, including a cancer cell line of relevant origin, can monitor the activity of the tumor microenvironment and reveal unique information about the malignancy-inducing properties of the individual cancer niche and serve as a future complementary diagnostic tool for breast cancer.

6.
J Transl Med ; 20(1): 209, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562738

RESUMO

BACKGROUND: Colorectal cancer is a commonly diagnosed cancer worldwide. Unfortunately, many patients do not respond to standard chemotherapy treatments and develop disease relapse and metastases. Besides cancer cell specific genetic changes, heterogeneity in the tumor microenvironment contribute to the clinical presentation of the disease and can potentially also influence drug resistance. By using a recently developed patient-derived scaffold method monitoring how a standardized reporter cancer cell line adapts to various microenvironments treated with chemotherapy, we wanted to clarify how individual patient specific microenvironments influence the chemotherapy response in colorectal cancer. METHODS: Surgically resected colorectal cancer specimens from 89 patients were decellularized to produce patient-derived scaffold, which were seeded with HT29 cells, cultured for 3 weeks, and treated with 5-fluorouracil. Gene expression changes of adapted and treated HT29 cells were monitored by qPCR and compared with clinical parameters including disease-free survival. RESULTS: The effects of 5-fluorouracil treatment varied between different patient-derived scaffold, but generally induced a reduced expression of proliferation genes and increased expression of pluripotency and epithelial-to-mesenchymal transition genes. Interestingly, patient-derived scaffold cultures obtained from patients with disease recurrences showed a significantly less pronounced anti-proliferative effect of 5-fluorouracil and more pronounced increase of pluripotency, with MKI67 and POU5F1 being among the most significant genes linked to disease relapse in colorectal cancer. CONCLUSIONS: Colorectal patient-derived scaffold can decode clinically relevant tumor microenvironmental influence of 5-fluorouracil treatment effects opening up for optimized precision medicine in colorectal cancer treatment.


Assuntos
Neoplasias Colorretais , Fluoruracila , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Células HT29 , Humanos , Recidiva Local de Neoplasia/patologia , Microambiente Tumoral
7.
Front Bioeng Biotechnol ; 9: 711977, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869246

RESUMO

The field of 3D cell cultures is currently emerging, and material development is essential in striving toward mimicking the microenvironment of a native tissue. By using the response of reporter cells to a 3D environment, a comparison between materials can be assessed, allowing optimization of material composition and microenvironment. Of particular interest, the response can be different in a normoxic and hypoxic culturing conditions, which in turn may alter the conclusion regarding a successful recreation of the microenvironment. This study aimed at determining the role of such environments to the conclusion of a better resembling cell culture model to native tissue. Here, the breast cancer cell line MCF7 was cultured in normoxic and hypoxic conditions on patient-derived scaffolds and compared at mRNA and protein levels to cells cultured on 3D printed scaffolds, Matrigel, and conventional 2D plastics. Specifically, a wide range of mRNA targets (40), identified as being regulated upon hypoxia and traditional markers for cell traits (cancer stem cells, epithelial-mesenchymal transition, pluripotency, proliferation, and differentiation), were used together with a selection of corresponding protein targets. 3D cultured cells were vastly different to 2D cultured cells in gene expression and protein levels on the majority of the selected targets in both normoxic and hypoxic culturing conditions. By comparing Matrigel and 3DPS-cultured cells to cells cultured on patient-derived scffolds, differences were also noted along all categories of mRNA targets while specifically for the GLUT3 protein. Overall, cells cultured on patient-derived scaffolds closely resembled cells cultured on 3D printed scaffolds, contrasting 2D and Matrigel-cultured cells, regardless of a normoxic or hypoxic culturing condition. Thus, these data support the use of either a normoxic or hypoxic culturing condition in assays using native tissues as a blueprint to optimize material composition.

8.
Bioengineering (Basel) ; 8(7)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34356204

RESUMO

Current conventional cancer drug screening models based on two-dimensional (2D) cell culture have several flaws and there is a large need of more in vivo mimicking preclinical drug screening platforms. The microenvironment is crucial for the cells to adapt relevant in vivo characteristics and here we introduce a new cell culture system based on three-dimensional (3D) printed scaffolds using cellulose nanofibrils (CNF) pre-treated with 2,2,6,6-tetramethylpyperidine-1-oxyl (TEMPO) as the structural material component. Breast cancer cell lines, MCF7 and MDA-MB-231, were cultured in 3D TEMPO-CNF scaffolds and were shown by scanning electron microscopy (SEM) and histochemistry to grow in multiple layers as a heterogenous cell population with different morphologies, contrasting 2D cultured mono-layered cells with a morphologically homogenous cell population. Gene expression analysis demonstrated that 3D TEMPO-CNF scaffolds induced elevation of the stemness marker CD44 and the migration markers VIM and SNAI1 in MCF7 cells relative to 2D control. T47D cells confirmed the increased level of the stemness marker CD44 and migration marker VIM which was further supported by increased capacity of holoclone formation for 3D cultured cells. Therefore, TEMPO-CNF was shown to represent a promising material for 3D cell culture model systems for cancer cell applications such as drug screening.

9.
J Med Chem ; 64(17): 12865-12876, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34428050

RESUMO

Cyclotriazadisulfonamide (CADA) compounds selectively down-modulate two human proteins of potential therapeutic interest, cluster of differentiation 4 (CD4) and sortilin. Progranulin is secreted from some breast cancer cells, causing dedifferentiation of receiving cancer cells and cancer stem cell proliferation. Inhibition of progranulin binding to sortilin, its main receptor, can block progranulin-induced metastatic breast cancer using a triple-negative in vivo xenograft model. In the current study, seven CADA compounds (CADA, VGD020, VGD071, TL020, TL023, LAL014, and DJ010) were examined for reduction of cellular sortilin expression and progranulin-induced breast cancer stem cell propagation. In addition, inhibition of progranulin-induced mammosphere formation was examined and found to be most significant for TL020, TL023, VGD071, and LAL014. Full experimental details are given for the synthesis and characterization of the four new compounds (TL020, TL023, VGD071, and DJ010). Comparison of solubilities, potencies, and cytotoxicities identified VGD071 as a promising candidate for future studies using mouse breast cancer models.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Progranulinas/farmacologia , Sulfonamidas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Descoberta de Drogas , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sulfonamidas/química
10.
Cell Commun Signal ; 19(1): 66, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34090457

RESUMO

BACKGROUND: Breast cancer is a common malignancy with varying clinical behaviors and for the more aggressive subtypes, novel and more efficient therapeutic approaches are needed. Qualities of the tumor microenvironment as well as cancer cell secretion have independently been associated with malignant clinical behaviors and a better understanding of the interplay between these two features could potentially reveal novel targetable key events linked to cancer progression. METHODS: A newly developed human derived in vivo-like growth system, consisting of decellularized patient-derived scaffolds (PDSs) recellularized with standardized breast cancer cell lines (MCF7 and MDA-MB-231), were used to analyze how 63 individual patient specific microenvironments influenced secretion determined by proximity extension assays including 184 proteins and how these relate to clinical outcome. RESULTS: The secretome from cancer cells in PDS cultures varied distinctly from cells grown as standard monolayers and besides a general increase in secretion from PDS cultures, several secreted proteins were only detectable in PDSs. Monolayer cells treated with conditioned media from PDS cultures, further showed increased mammosphere formation demonstrating a cancer stem cell activating function of the PDS culture induced secretion. The detailed secretomic profiles from MCF7s growing on 57 individual PDSs differed markedly but unsupervised clustering generated three separate groups having similar secretion profiles that significantly correlated to different clinical behaviors. The secretomic profile that associated with cancer relapse and high grade breast cancer showed induced secretion of the proteins IL-6, CCL2 and PAI-1, all linked to cancer stem cell activation, metastasis and priming of the pre-metastatic niche. Cancer promoting pathways such as "Suppress tumor immunity" and "Vascular and tissue remodeling" was also linked to this more malignant secretion cluster. CONCLUSION: PDSs repopulated with cancer cells can be used to assess how cancer secretion is effected by specific and varying microenvironments. More malignant secretion patterns induced by specific patient based cancer microenvironments could further be identified pinpointing novel therapeutic opportunities targeting micro environmentally induced cancer progression via secretion of potent cytokines. Video abstract.


Assuntos
Neoplasias da Mama/classificação , Neoplasias da Mama/metabolismo , Alicerces Teciduais/química , Linhagem Celular Tumoral , Intervalo Livre de Doença , Feminino , Humanos , Gradação de Tumores , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
11.
Sci Rep ; 11(1): 13334, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172801

RESUMO

Three-dimensional cell culture platforms based on decellularised patient-based microenvironments provide in vivo-like growth conditions allowing cancer cells to interact with intact structures and components of the surrounding tissue. A patient-derived scaffold (PDS) model was therefore evaluated as a testing platform for the endocrine therapies (Z)-4-Hydroxytamoxifen (4OHT) and fulvestrant as well as the CDK4/6-inhibitor palbociclib, monitoring the treatment responses in breast cancer cell lines MCF7 and T47D adapted to the patient-based microenvironments. MCF7 cells growing in PDSs showed increased resistance to 4OHT and fulvestrant treatment (100- and 20-fold) compared to 2D cultures. Quantitative PCR analyses of endocrine treated cancer cells in PDSs revealed upregulation of pluripotency markers further supported by increased self-renewal capacity in sphere formation assays. When comparing different 3D growth platforms including PDS, matrigel, gelatin sponges and 3D-printed hydrogels, 3D based cultures showed slightly varying responses to fulvestrant and palbociclib whereas PDS and matrigel cultures showed more similar gene expression profiles for 4OHT treatment compared to the other platforms. The results support that the PDS technique maximized to provide a multitude of smaller functional PDS replicates from each primary breast cancer, is an up-scalable patient-derived drug-testing platform available for gene expression profiling and downstream functional assays.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Células Endócrinas/efeitos dos fármacos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células Endócrinas/metabolismo , Feminino , Fulvestranto/farmacologia , Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Masculino , Pessoa de Meia-Idade , Piperazinas/farmacologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Piridinas/farmacologia , Regulação para Cima/efeitos dos fármacos
12.
Biomed Mater ; 16(4)2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34030145

RESUMO

The cancer microenvironment influences tumor progression and metastasis and is pivotal to consider when designingin vivo-like cancer models. Current preclinical testing platforms for cancer drug development are mainly limited to 2D cell culture systems that poorly mimic physiological environments and traditional, low throughput animal models. The aim of this work was to produce a tunable testing platform based on 3D printed scaffolds (3DPS) with a simple geometry that, by extracellular components and response of breast cancer reporter cells, mimics patient-derived scaffolds (PDS) of breast cancer. Here, the biocompatible polysaccharide alginate was used as base material to generate scaffolds consisting of a 3D grid containing periostin and hydroxyapatite. Breast cancer cell lines (MCF7 and MDA-MB-231) produced similar phenotypes and gene expression levels of cancer stem cell, epithelial-mesenchymal transition, differentiation and proliferation markers when cultured on 3DPS and PDS, contrasting conventional 2D cultures. Importantly, cells cultured on 3DPS and PDS showed scaffold-specific responses to cytotoxic drugs (doxorubicin and 5-fluorouracil) that were different from 2D cultured cells. In conclusion, the data presented support the use of a tunable alginate-based 3DPS as a tumor model in breast cancer drug discovery.


Assuntos
Antineoplásicos , Neoplasias da Mama/metabolismo , Impressão Tridimensional , Alicerces Teciduais/química , Microambiente Tumoral/efeitos dos fármacos , Alginatos/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Medicina de Precisão , Células Tumorais Cultivadas
13.
BMC Cancer ; 21(1): 185, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33618683

RESUMO

BACKGROUND: The growth factor progranulin has been implicated in numerous biological processes such as wound healing, inflammation and progressive tumorigenesis. Both progranulin and its receptor sortilin are known to be highly expressed in subgroups of breast cancer and have been associated with various clinical properties including tamoxifen resistance. Recent data further suggest that progranulin, via its receptor sortilin, drives breast cancer stem cell propagation in vitro and increases metastasis formation in an in vivo breast cancer xenograft model. In this retrospective biomarker analysis, we aimed to determine whether tumor co-expression of progranulin and sortilin has prognostic and treatment predictive values for breast cancer patients. METHODS: We explored how co-expression of progranulin and sortilin was associated with established clinical markers by analyzing a tissue microarray including 560 randomized premenopausal breast cancer patients receiving either 2 years of tamoxifen treatment or no adjuvant treatment, with a median follow-up time of 28 years. Breast cancer-specific survival was analyzed using Kaplan-Meier and Cox Proportional Hazards regression models to assess the prognostic and predictive value of progranulin and sortilin in relation to known clinical markers. RESULTS: Co-expression of progranulin and sortilin was observed in 20% of the breast cancer samples. In untreated patients, prognostic considerations could be detailed separately from treatment prediction and the high progranulin and sortilin expressing subgroup was significantly associated with breast cancer-specific death in multivariable analyses (HR=2.188, CI: 1.317-3.637, p=0.003) along with tumor size, high tumor grade and lymph node positivity. When comparing the untreated patients with tamoxifen treated patients in the ERα positive subgroup, co-expression of progranulin and sortilin was not linked to tamoxifen resistance. CONCLUSION: Data suggest that co-expression of progranulin and its receptor sortilin is a novel prognostic biomarker combination identifying a highly malignant subgroup of breast cancer. Importantly, this subpopulation could potentially be targeted with anti-sortilin based therapies.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Células-Tronco Neoplásicas/metabolismo , Progranulinas/metabolismo , Tamoxifeno/uso terapêutico , Adulto , Antineoplásicos Hormonais/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Metástase Linfática , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/patologia , Prognóstico , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Retrospectivos , Taxa de Sobrevida
14.
J Cell Physiol ; 236(6): 4709-4724, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33368325

RESUMO

Breast cancer is a heterogeneous disease where the tumor microenvironment, including extracellular components, plays a crucial role in tumor progression, potentially modulating treatment response. Different approaches have been used to develop three-dimensional models able to recapitulate the complexity of the extracellular matrix. Here, we use cell-free patient-derived scaffolds (PDSs) generated from breast cancer samples that were recellularized with cancer cell lines as an in vivo-like culture system for drug testing. We show that PDS cultured MCF7 cancer cells increased their resistance against the front-line chemotherapy drugs 5-fluorouracil, doxorubicin and paclitaxel in comparison to traditional two-dimensional cell cultures. The gene expression of the environmentally adapted cancer cells was modulated in different ways depending on the drug and the concentration used. High doses of doxorubicin reduced cancer stem cell features, whereas 5-fluorouracil increased stemness and decreased the proliferative phenotype. By using PDSs repopulated with other breast cancer cell lines, T-47D and MDA-MB-231, we observed both general and cell line specific drug responses. In summary, PDSs can be used to examine the extracellular matrix influence on cancer drug responses and for testing novel compounds in in vivo-like microenvironments.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Fluoruracila/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Paclitaxel/farmacologia , Microambiente Tumoral , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenótipo , Impressão Tridimensional , Alicerces Teciduais , Transcriptoma
15.
Cancer Med ; 10(3): 867-882, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33356003

RESUMO

BACKGROUND: Colorectal cancer is the second most common cause of cancer-related death worldwide and standardized therapies often fail to treat the more aggressive and progressive types of colorectal cancer. Tumor cell heterogeneity and influence from the surrounding tumor microenvironment (TME) contribute to the complexity of the disease and large variability in clinical outcomes. METHODS: To model the heterogeneous nature of colorectal cancer, we used patient-derived scaffolds (PDS), which were obtained via decellularization of surgically resected tumor material, as a growth substrate for standardized cell lines. RESULTS: After confirmation of native cell absence and validation of the structural and compositional integrity of the matrix, 89 colorectal PDS were repopulated with colon cancer cell line HT29. After 3 weeks of PDS culture, HT29 cells varied their gene and protein expression profiles considerably compared to 2D-grown HT29 cells. Markers associated with proliferation were consistently decreased, while markers associated with pluripotency were increased in PDS-grown cells compared to their 2D counterparts. When comparing the PDS-induced changes in HT29 cells with clinically relevant tumor information from individual patients, we observed significant associations between stemness/pluripotency markers and tumor location, and between epithelial-to-mesenchymal transition (EMT) markers and cancer mortality. Kaplan-Meier analysis revealed that low PDS-induced EMT correlated with worse cancer-specific survival. CONCLUSIONS: The colorectal PDS model can be used as a simplified personalized tool that can potentially reveal important diagnostic and pathophysiological information related to the TME.


Assuntos
Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal , Modelos Biológicos , Alicerces Teciduais/química , Microambiente Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Neoplasias Colorretais/cirurgia , Feminino , Células HT29 , Humanos , Masculino , Prognóstico , Células Tumorais Cultivadas
16.
Data Brief ; 31: 105860, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32637480

RESUMO

Patient-derived scaffolds (PDSs) generated from primary breast cancer tumors can be used to model the tumor microenvironment in vitro. Patient-derived scaffolds are generated by repeated detergent washing, removing all cells. Here, we analyzed the protein composition of 15 decellularized PDSs using liquid chromatography-mass spectrometry/mass spectrometry. One hundred forty-three proteins were detected and their relative abundance was calculated using a reference sample generated from all PDSs. We performed heatmap analysis of all the detected proteins to display their expression patterns across different PDSs together with pathway enrichment analysis to reveal which processes that were connected to PDS protein composition. This protein dataset together with clinical information is useful to investigators studying the microenvironment of breast cancers. Further, after repopulating PDSs with either MCF7 or MDA-MB-231 cells, we quantified their gene expression profiles using RNA sequencing. These data were also compared to cells cultured in conventional 2D conditions, as well as to cells cultured as xenografts in immune-deficient mice. We investigated the overlap of genes regulated between these different culture conditions and performed pathway enrichment analysis of genes regulated by both PDS and xenograft cultures compared to 2D in both cell lines to describe common processes associated with both culture conditions. Apart from our described analyses of these systems, these data are useful when comparing different experimental model systems. Downstream data analyses and interpretations can be found in the research article "Patient-derived scaffolds uncover breast cancer promoting properties of the microenvironment" [1].

17.
PLoS One ; 15(7): e0236187, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32692762

RESUMO

The definitive characterization of common cancer stem cell (CSCs) subpopulations in breast cancer subtypes with distinct genotypic and phenotypic features remains an ongoing challenge. In this study, we have used a non-biased genome wide screening approach to identify transcriptional networks that may be specific to the CSC subpopulations in both luminal and basal breast cancer subtypes. In depth studies of three CSC-enriched breast cancer cell lines representing various subtypes of breast cancer revealed a striking hyperactivation of the mevalonate metabolic pathway in comparison to control cells. The upregulation of metabolic networks is a key feature of tumour cells securing growth and proliferative capabilities and dysregulated mevalonate metabolism has been associated with tumour malignancy and cellular transformation in breast cancer. Furthermore, accumulating evidence suggests that Simvastatin therapy, a mevalonate pathway inhibitor, could affect breast cancer progression and reduce breast cancer recurrence. When detailing the mevalonate pathway in breast cancer using a single-cell qPCR, we identified the mevalonate precursor enzyme, HMGCS1, as a specific marker of CSC-enriched subpopulations within both luminal and basal tumour subtypes. Down-regulation of HMGCS1 also decreased the CSC fraction and function in various model systems, suggesting that HMGCS1 is essential for CSC-activities in breast cancer in general. These data was supported by strong associations between HMGCS1 expression and aggressive features, such as high tumour grade, p53 mutations as well as ER-negativity in lymph node positive breast cancer. Importantly, loss of HMGCS1 also had a much more pronounced effect on CSC-activities compared to treatment with standard doses of Simvastatin. Taken together, this study highlights HMGCS1 as a potential gatekeeper for dysregulated mevalonate metabolism important for CSC-features in both luminal and basal breast cancer subtypes. Pharmacological inhibition of HMGCS1 could therefore be a superior novel treatment approach for breast cancer patients via additional CSC blocking functions.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Hidroximetilglutaril-CoA Sintase/metabolismo , Ácido Mevalônico/metabolismo , Modelos Biológicos , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/patologia , Neoplasias da Mama/classificação , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Estudos de Coortes , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Hidroximetilglutaril-CoA Sintase/genética , Linfonodos/patologia , Redes e Vias Metabólicas , Invasividade Neoplásica
18.
Biomaterials ; 235: 119705, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31978840

RESUMO

Tumor cells interact with the microenvironment that specifically supports and promotes tumor development. Key components in the tumor environment have been linked to various aggressive cancer features and can further influence the presence of subpopulations of cancer cells with specific functions, including cancer stem cells and migratory cells. To model and further understand the influence of specific microenvironments we have developed an experimental platform using cell-free patient-derived scaffolds (PDSs) from primary breast cancers infiltrated with standardized breast cancer cell lines. This PDS culture system induced a series of orchestrated changes in differentiation, epithelial-mesenchymal transition, stemness and proliferation of the cancer cell population, where an increased cancer stem cell pool was confirmed using functional assays. Furthermore, global gene expression profiling showed that PDS cultures were similar to xenograft cultures. Mass spectrometry analyses of cell-free PDSs identified subgroups based on their protein composition that were linked to clinical properties, including tumor grade. Finally, we observed that an induction of epithelial-mesenchymal transition-related genes in cancer cells growing on the PDSs were significantly associated with clinical disease recurrences in breast cancer patients. Patient-derived scaffolds thus mimics in vivo-like growth conditions and uncovers unique information about the malignancy-inducing properties of tumor microenvironment.


Assuntos
Neoplasias da Mama , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal , Humanos , Recidiva Local de Neoplasia , Células-Tronco Neoplásicas , Microambiente Tumoral
19.
Cancer Med ; 9(5): 1768-1778, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31962001

RESUMO

BACKGROUND: Tumor stroma, of which fibroblasts are the most abundant cell, resembles a non-healing wound, where a procoagulant environment creates a permissive milieu for cancer growth. We aimed to determine if tumor expression of coagulation factors (procoagulant phenotype), and systemic hypercoagulability, occur at the preinvasive (ductal carcinoma in situ; DCIS) stage and correlate with breast cancer subtype, disease-free survival (DFS), and overall survival (OS). METHODS: In a prospective cohort of early breast cancer (DCIS, n = 76; invasive, n = 248) tumor, normal breast and plasma were examined. Fibroblast and epithelial expression of Tissue Factor (TF), thrombin, PAR1, PAR2, and plasma thrombin-antithrombin (TAT) and D-dimer were correlated with clinicopathological data, and 5-year survival. RESULTS: Fibroblast expression of TF, thrombin, and PAR1 was increased in DCIS and invasive cancer compared to normal breast fibroblasts (P ≤ .003, all). Fibroblast TF, thrombin, PAR1, and PAR2 was increased in cancers with high Ki67, high grade, ER- (vs ER+), and HER2+ (vs HER2-) (all P < .05). On univariate analysis, fibroblast TF expression was inversely associated with DFS (P = .04) and OS (P = .02). D-dimer was higher in node positive (507 (CI: 411-625) ng/mL, n = 68) vs negative patients (428 (CI: 387-472) ng/mL, n = 171, P = .004) and inversely associated with OS (P = .047). On multivariate analysis, plasma TAT was associated with reduced OS (HR 3.26, CI 1.16-3.1, P = .02), with a high plasma TAT (≥3.2 ng/mL) associated with > 3-fold mortality risk compared to low TAT. CONCLUSION: This demonstrates procoagulant phenotypic changes occur in fibroblasts at the preinvasive stage. Fibroblast procoagulant phenotype is associated with aggressive breast cancer subtypes and reduced survival. Coagulation may be a therapeutic target in breast cancer.


Assuntos
Neoplasias da Mama/mortalidade , Carcinoma Ductal de Mama/mortalidade , Carcinoma Intraductal não Infiltrante/mortalidade , Trombina/metabolismo , Tromboplastina/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Mama/citologia , Mama/patologia , Mama/cirurgia , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Ductal de Mama/patologia , Carcinoma Ductal de Mama/cirurgia , Carcinoma Intraductal não Infiltrante/patologia , Carcinoma Intraductal não Infiltrante/cirurgia , Intervalo Livre de Doença , Feminino , Seguimentos , Perfilação da Expressão Gênica , Humanos , Mastectomia , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia , Prognóstico , Estudos Prospectivos , Análise Serial de Tecidos , Microambiente Tumoral , Adulto Jovem
20.
Front Genet ; 10: 500, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191614

RESUMO

Breast cancer tumors display different cellular phenotypes. A growing body of evidence points toward a population of cancer stem cells (CSCs) that is important for metastasis and treatment resistance, although the characteristics of these cells are incomplete. We used mammosphere formation assay and label-retention assay as functional cellular approaches to enrich for cells with different degree of CSC properties in the breast cancer cell line MDA-MB-231 and performed single-cell RNA sequencing. We clustered the cells based on their gene expression profiles and identified three subpopulations, including a CSC-like population. The cell clustering into these subpopulations overlapped with the cellular enrichment approach applied. To molecularly define these groups, we identified genes differentially expressed between the three subpopulations which could be matched to enriched gene sets. We also investigated the transition process from CSC-like cells into more differentiated cell states. In the CSC population we found 14 significantly upregulated genes. Some of these potential breast CSC markers are associated to reported stem cell properties and clinical survival data, but further experimental validation is needed to confirm their cellular functions. Detailed characterization of CSCs improve our understanding of mechanisms for tumor progression and contribute to the identification of new treatment targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...