Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2487, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514619

RESUMO

The cellular mechanisms underlying axonal morphogenesis are essential to the formation of functional neuronal networks. We previously identified the autism-linked kinase NUAK1 as a central regulator of axon branching through the control of mitochondria trafficking. However, (1) the relationship between mitochondrial position, function and axon branching and (2) the downstream effectors whereby NUAK1 regulates axon branching remain unknown. Here, we report that mitochondria recruitment to synaptic boutons supports collateral branches stabilization rather than formation in mouse cortical neurons. NUAK1 deficiency significantly impairs mitochondrial metabolism and axonal ATP concentration, and upregulation of mitochondrial function is sufficient to rescue axonal branching in NUAK1 null neurons in vitro and in vivo. Finally, we found that NUAK1 regulates axon branching through the mitochondria-targeted microprotein BRAWNIN. Our results demonstrate that NUAK1 exerts a dual function during axon branching through its ability to control mitochondrial distribution and metabolic activity.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Axônios/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo
2.
iScience ; 26(5): 106674, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37182099

RESUMO

Non-lethal caspase activation (NLCA) has been linked to neurodevelopmental processes. However, how neurons control NLCA remains elusive. Here, we focused on Bcl-xL, a Bcl-2 homolog regulating caspase activation through the mitochondria. We generated a mouse model, referred to as ER-xL, in which Bcl-xL is absent in the mitochondria, yet present in the endoplasmic reticulum. Unlike bclx knockout mice that died at E13.5, ER-xL mice survived embryonic development but died post-partum because of altered feeding behavior. Enhanced caspase-3 activity was observed in the brain and the spinal cord white matter, but not the gray matter. No increase in cell death was observed in ER-xL cortical neurons, suggesting that the observed caspase-3 activation was apoptosis-independent. ER-xL neurons displayed increased caspase-3 activity in the neurites, resulting in impaired axon arborescence and synaptogenesis. Together, our findings suggest that mitochondrial Bcl-xL finely tunes caspase-3 through Drp-1-dependent mitochondrial fission, which is critical to neural network design.

3.
Elife ; 102021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34448452

RESUMO

Skeletal muscles are composed of hundreds of multinucleated muscle fibers (myofibers) whose myonuclei are regularly positioned all along the myofiber's periphery except the few ones clustered underneath the neuromuscular junction (NMJ) at the synaptic zone. This precise myonuclei organization is altered in different types of muscle disease, including centronuclear myopathies (CNMs). However, the molecular machinery regulating myonuclei position and organization in mature myofibers remains largely unknown. Conversely, it is also unclear how peripheral myonuclei positioning is lost in the related muscle diseases. Here, we describe the microtubule-associated protein, MACF1, as an essential and evolutionary conserved regulator of myonuclei positioning and maintenance, in cultured mammalian myotubes, in Drosophila muscle, and in adult mammalian muscle using a conditional muscle-specific knockout mouse model. In vitro, we show that MACF1 controls microtubules dynamics and contributes to microtubule stabilization during myofiber's maturation. In addition, we demonstrate that MACF1 regulates the microtubules density specifically around myonuclei, and, as a consequence, governs myonuclei motion. Our in vivo studies show that MACF1 deficiency is associated with alteration of extra-synaptic myonuclei positioning and microtubules network organization, both preceding NMJ fragmentation. Accordingly, MACF1 deficiency results in reduced muscle excitability and disorganized triads, leaving voltage-activated sarcoplasmic reticulum Ca2+ release and maximal muscle force unchanged. Finally, adult MACF1-KO mice present an improved resistance to fatigue correlated with a strong increase in mitochondria biogenesis.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microtúbulos/metabolismo , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mioblastos Esqueléticos/metabolismo , Junção Neuromuscular/metabolismo , Biogênese de Organelas , Animais , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/ultraestrutura , Acoplamento Excitação-Contração , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Microtúbulos/genética , Microtúbulos/ultraestrutura , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/ultraestrutura , Fadiga Muscular , Fibras Musculares Esqueléticas/ultraestrutura , Força Muscular , Mioblastos Esqueléticos/ultraestrutura , Junção Neuromuscular/genética , Junção Neuromuscular/ultraestrutura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...