Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; : e202400158, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38733075

RESUMO

Photocatalytic technology can efficiently convert solar energy to chemical energy and this process is considered as one of the green and sustainable technology for practical implementation. In recent years, metal-organic frameworks (MOFs) have attracted widespread attention due to their unique advantages and have been widely applied in the field of photocatalysis. Among them, noble metals have contributed significant advances to the field as effective catalysts in photocatalytic reactions. Importantly, noble metals can also form a synergistic catalytic effect with MOFs to further improve the efficiency of photocatalytic reactions. However, how to precisely control the synergistic effect between MOFs and noble metals to improve the photocatalytic performance of materials still needs to be further studied. In this review, the synergistic effects of MOFs and noble metal catalysts in photocatalytic reactions are firstly summarized in terms of noble metal nanoparticles, noble metal monoatoms, noble metal compounds, and noble metal complexes, and focus on the mechanisms and advantages of these synergistic effects, so as to provide useful guidance for the further research and application of MOFs and contribute to the development of the field of photocatalysis.

2.
Inorg Chem ; 63(18): 8329-8335, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38648287

RESUMO

Most of the porous materials used for acetylene/carbon dioxide separation have the problems of poor stability and high energy requirements for regeneration, which significantly hinder their practical application in industries. Here, we report a novel calcium-based metal-organic framework (NKM-123) with excellent chemical stability against water, acids, and bases. Additionally, it has exceptional thermal stability, retaining its structural integrity at temperatures up to 300 °C. This material exhibits promising potential for separating C2H2 and CO2 gases. Furthermore, it demonstrates an adsorption heat of 29.3 kJ mol-1 for C2H2, which is lower than that observed in the majority of MOFs used for C2H2/CO2 separations. The preferential adsorption of C2H2 over that of CO2 is confirmed by dispersion-corrected density functional theory (DFT-D) calculations. In addition, the potential of industrial feasibility of NKM-123 for C2H2/CO2 separation is confirmed by transient breakthrough tests. The robust cycle performance and structural stability of NKM-123 during multiple breakthrough tests show great potential in the industrial separation of light hydrocarbons.

3.
Chem Sci ; 15(12): 4529-4537, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516073

RESUMO

The rational design and construction of hydrogen-bonded organic frameworks (HOFs) are crucial for enabling their practical applications, but controlling their structure and preparation as intended remains challenging. Inspired by reticular chemistry, two novel blue-emitting NKM-HOF-1 and NKM-HOF-2 were successfully constructed based on two judiciously designed peripherally extended pentiptycene carboxylic acids, namely H8PEP-OBu and H8PEP-OMe, respectively. The large pores within these two HOFs can adsorb fluorescent molecules such as diketopyrrolopyrrole (DPP) and 9-anthraldehyde (AnC) to form HOFs ⊃ DPP/AnC composites, subsequently used in the fabrication of white-light-emitting devices (WLEDs). Specifically, two WLEDs were assembled by coating NKM-HOF-1 ⊃ DPP-0.13/AnC-3.5 and NKM-HOF-2 ⊃ DPP-0.12/AnC-3 on a 330 nm ultraviolet LED bulb, respectively. The corresponding CIE coordinates were (0.29, 0.33) and (0.32, 0.34), along with corresponding color temperatures of 7815 K and 6073 K. This work effectively demonstrates the feasibility of employing reticular chemistry strategies to predict and design HOFs with specific topologies for targeted applications.

4.
Angew Chem Int Ed Engl ; 63(22): e202403646, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38494740

RESUMO

Organic piezochromic materials that manifest pressure-stimuli-responses are important in various fields such as data storage and anticounterfeiting. The manipulation of piezofluorochromic behaviors for these materials is promising but remains a great challenge. Herein, a non-luminous components regulated strategy is developed and organic molecular cages (OMCs), a burgeoning class of crystalline organic materials with structural dynamics, are first explored for the design of piezofluorochromic materials with tunable luminescence. A series of OMCs based on aggregation-induced emission (AIE) chromophores, termed Cage 1-3, are synthesized and their piezofluorochromic behaviors are investigated by diamond anvil cell technique. Due to the sufficient voids between its flexible chromophores offered by the OMC structure, Cage 1 exhibits thermofluorochromic and piezofluorochromic properties. Moreover, the piezofluorochromic performance of this OMC could be further promoted by replacing its non-luminous components with improved flexibilities, and a remarkable luminescence peak shift by 150 nm together with a response sensitivity of 13.8 nm GPa-1 was achieved upon hydrostatic compression. The cage structure plays a vital role in facilitating efficient and reversible piezofluorochromic behaviors. This study has shed light on the rational design and exploitation of OMCs as an exceptional platform to accomplish customizable piezofluorochromic behaviors and enlarge their potential applications in pressure-based luminescence.

5.
Small ; 20(4): e2305879, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37715100

RESUMO

Central metal exchange can innovatively open the cavity of metal-organic frameworks (MOFs) by alternating the framework topology. Here, the single-crystal-to-single-crystal (SC-SC) transformation is reported from a Co-based MOF {[Co1.25 (HL)0.5 (Pz-NH2 )0.25 (µ3 -O)0.25 (µ2 -OH)0.25 (H2 O)]·0.125 Co·0.125 L·10.25H2 O}n (Co-MOF, L = 5,5'-(1H-2,3,5-triazole-1,4-diyl)diisophthalic acid) into two novel MOF materials, {[Cu1.75 L0.75 (Pz-NH2 )0.125 (µ3 -O)0.125 (µ2 -OH)0.25 (H2 O)0.375 ]•3CH3 CN}n (Cu-MOF) and {[Zn1.75 L0.625 (Pz-NH2 )0.25 (µ3 -O)0.25 (µ2 -O)0.25 (H2 O)1.25 ]•4CH3 CN}n (Zn-MOF), through exchanging the Co2+ in the MOF into Cu2+ or Zn2+ , respectively. The free Co2+ and L4- in the Co-MOF channels fuse with the skeleton during the Co→Cu and Co→Zn exchange processes, leading to the expansion of the channel space and the transformation of the secondary building units (SBUs) to form an adjustable skeleton. The nonlinear optical response results show that the MOFs generated by the exchange of the central metal exhibit different saturable absorption and the self-focusing effect. In addition, loading polypyrrole (PPy) into the MOFs can not only improve the stability of the MOFs but also further optimize the nonlinear optical behavior. This work suggests that SC-SC central metal exchange and the introduction of polymer molecules can tune the nonlinear optical response, which provides a new perspective for the future study of nonlinear optical materials.

6.
Dalton Trans ; 52(15): 4752-4759, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36945865

RESUMO

Photocatalytic reduction of CO2 to valuable carbon fuel is a prospective technique to decrease CO2 emissions and simultaneously generate efficient chemical energy. In this paper, a novel high-efficiency photocatalyst ZIF-8@CeO2 heterogeneous composite (ZIF = zeolitic imidazolate framework) was prepared by the hydrothermal method, where CeO2 nanospheres were uniformly grown on the surface of ZIF-8. Compared to pristine ZIF-8 or CeO2 nanoparticles (NPs), the ZIF-8@CeO2 composite shows significantly better efficiency in the reduction of CO2 into CO and CH4 under light irradiation, that is the CO evolution rate can reach 465.01 µmol g-1 h-1 and the CH4 evolution rate can reach 181.27 µmol g-1 h-1. Analyses indicated that the addition of CeO2 in the composites will expand the photoresponse region; the formation of the ZIF-8/CeO2 heterojunction significantly promoted the separation of photogenerated electron-hole pairs within the composite. This work provided an effective method to further improve the catalytic activity of ZIF-based materials, which paved a new way for eco-friendly conversion of carbon dioxide into clean fuels and they could also have huge potential for application in energy and environmental science.

7.
Angew Chem Int Ed Engl ; 62(20): e202302429, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36920791

RESUMO

We report a unique vinyl coordination polymer (CP), [Zn(4-Fb)2 (tkpvb)]n (1, 4-HFb=4-fluorobenzoic acid, tkpvb=1,2,4,5-tetrakis(4-pyridylvinyl)benzene) that undergoes a rare photopolymerization reaction to form a two-dimensional CP integrated with a one-dimensional linear organic polymer. Upon light irradiation at different wavelengths, 1 exhibits an unprecedented phenomenon of photoinduced nonlinear lattice expansion. 1 can be uniformly dispersed in polyvinyl alcohol (PVA) to form the composite film of 1-PVA. When this film is exposed to UV light, internal minute stresses within crystallites are released by lattice expansion, resulting in a variety of photopolymerization-driven macroscopic mechanical motions. The findings provide new insights into the conversion of small lattice expansions of CPs into macroscopic mechanical motions based on photopolymerization reactions, which can promote the development of CPs-based smart photoactuators in the burgeoning field of microrobotics.

8.
Chemistry ; 28(51): e202201408, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35675317

RESUMO

A family of seven silver(I)-perfluorocarboxylate-quinoxaline coordination polymers, [Ag4 (O2 CRF )4 (quin)4 ] 1-5 (RF =(CF2 )n-1 CF3 )4 , n=1 to 5); [Ag4 (O2 C(CF2 )2 CO2 )2 (quin)4 ] 6; [Ag4 (O2 CC6 F5 )4 (quin)4 ] 7 (quin=quinoxaline), denoted by composition as 4 : 4 : 4 phases, was synthesised from reaction of the corresponding silver(I) perfluorocarboxylate with excess quinoxaline. Compounds 1-7 adopt a common 2D layered structure in which 1D silver-perfluorcarboxylate chains are crosslinked by ditopic quinoxaline ligands. Solid-state reaction upon heating, involving loss of one equivalent of quinoxaline, yielding new crystalline 4 : 4 : 3 phases [Ag4 (O2 C(CF2 )n-1 CF3 )4 (quin)3 ]n (8-10, n=1 to 3), was followed in situ by PXRD and TGA studies. Crystal structures were confirmed by direct syntheses and structure determination. The solid-state reaction converting 4 : 4 : 4 to 4 : 4 : 3 phase materials involves cleavage and formation of Ag-N and Ag-O bonds to enable the structural rearrangement. One of the 4 : 4 : 3 phase coordination polymers (10) shows the remarkably high dielectric constant in the low electric field frequency range.

9.
Dalton Trans ; 51(16): 6358-6365, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35383821

RESUMO

Reactions of [Et4N][Tp*WS3(CuCl)3] (1) (Tp* = hydridotris(3,5-dimethylpyrazol-1-yl)borate) with 2 equiv. of AgOTf (OTf- = trifluoromethanesulfonate) and 1 equiv. of several bidentate pyridine ligands including 2,5-bis(pyridine-4-yl)thiazolo[5,4-d]thiazole (L1), 2,7-di(pyridin-4-yl)-9H-fluorene (L2), 2,7-di(pyridin-4-yl)-9H-carbazole (L3), and 2,7-di(pyridin-4-yl)-9H-fluoren-9-one (L4) afforded four W/Cu/S cluster-based supramolecular compounds [(Tp*WS3Cu2Cl)2(L1)] (2), {[(Tp*WS3Cu3)2(µ-Cl)2(µ4-Cl)]2(L2)2}(OTf)2 (3), {[(Tp*WS3Cu3)2(µ-Cl)2(µ4-Cl)]2(L3)2}(OTf)2 (4) and {[(Tp*WS3Cu3)2(µ-Cl)2(µ4-Cl)]2(L4)2}(OTf)2 (5). Compounds 2-5 were characterized by elemental analysis, IR, UV-vis, 1H NMR, and single-crystal X-ray diffraction analysis. The neutral cluster 2 behaves as a supramolecular wire constructed by L1 bridging two butterfly-shaped [Tp*WS3Cu2Cl] cores. The cluster cations of 3-5 contain two [(Tp*WS3Cu3)2(µ-Cl)2(µ4-Cl)]+ cores linked by two L2, L3, or L4 ligands, which finally formed a cationic supramolecular rectangle. The third-order nonlinear-optical (NLO) properties of 3-5 in DMF were also investigated by Z-scan techniques and their NLO responses were enhanced compared to those of their precursor 1.

10.
Inorg Chem ; 56(20): 12542-12550, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-28967747

RESUMO

Solvothermal reactions of AgNO3 with N1,N4-bis(5-fluoropyridin-3-yl)succinamide (bfps) in MeCN afforded the one-dimensional cationic coordination polymer {[Ag(bfps)]NO3}n (1). Upon treatment of 1 with the anionic azo dye orange II (NaOII) in aqueous solution, the NO3- anions of 1 could be gradually exchanged by the OII- anions via an anion-exchange process. The resulting OII anion-exchanged products {[Ag(bfps)](NO3)0.85(OII)0.15}n (2) and {[Ag(bfps)](NO3)0.1(OII)0.9}n (3) were formed by different molar ratios of 1 and the newly formed phase "{[Ag(bfps)](OII)}n" (4), confirmed by PXRD patterns. Relative to those of the precursors 1 and NaOII, complexes 2 and 3 demonstrated enlarged photocurrent responses and reduced dielectric constants and dielectric losses, which could be correlated with the OII- contents in their structures. Complex 3 acquired a stable anodic photocurrent of 12.06 µA, which was 4.9 times higher than that of 1. The dielectric constant (εr = 4.2) and dielectric loss (0.002) of 3 were nearly frequency independent in the range from 1 to 106 Hz. The results provide an interesting insight into the rational assembly of CP-dye complexes and their tunable optoelectronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...