RESUMO
The mechanisms for how large-scale brain networks contribute to sustained attention are unknown. Attention fluctuates from moment to moment, and this continuous change is consistent with dynamic changes in functional connectivity between brain networks involved in the internal and external allocation of attention. In this study, we investigated how brain network activity varied across different levels of attentional focus (i.e., "zones"). Participants performed a finger-tapping task, and guided by previous research, in-the-zone performance or state was identified by low reaction time variability and out-of-the-zone as the inverse. In-the-zone sessions tended to occur earlier in the session than out-of-the-zone blocks. This is unsurprising given the way attention fluctuates over time. Employing a novel method of time-varying functional connectivity, called the quasi-periodic pattern analysis (i.e., reliable, network-level low-frequency fluctuations), we found that the activity between the default mode network (DMN) and task positive network (TPN) is significantly more anti-correlated during in-the-zone states versus out-of-the-zone states. Furthermore, it is the frontoparietal control network (FPCN) switch that differentiates the two zone states. Activity in the dorsal attention network (DAN) and DMN were desynchronized across both zone states. During out-of-the-zone periods, FPCN synchronized with DMN, while during in-the-zone periods, FPCN switched to synchronized with DAN. In contrast, the ventral attention network (VAN) synchronized more closely with DMN during in-the-zone periods compared with out-of-the-zone periods. These findings demonstrate that time-varying functional connectivity of low frequency fluctuations across different brain networks varies with fluctuations in sustained attention or other processes that change over time.
Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Tempo de ReaçãoRESUMO
Climate change is increasing the frequency and intensity of weather-related disasters such as hurricanes, wildfires, floods, and droughts. Understanding resilience and vulnerability to these intense stressors and their aftermath could reveal adaptations to extreme environmental change. In 2017, Puerto Rico suffered its worst natural disaster, Hurricane Maria, which left 3,000 dead and provoked a mental health crisis. Cayo Santiago island, home to a population of rhesus macaques (Macaca mulatta), was devastated by the same storm. We compared social networks of two groups of macaques before and after the hurricane and found an increase in affiliative social connections, driven largely by monkeys most socially isolated before Hurricane Maria. Further analysis revealed monkeys invested in building new relationships rather than strengthening existing ones. Social adaptations to environmental instability might predispose rhesus macaques to success in rapidly changing anthropogenic environments.
Assuntos
Animais Selvagens/fisiologia , Animais Selvagens/psicologia , Tempestades Ciclônicas , Macaca mulatta/fisiologia , Macaca mulatta/psicologia , Comportamento Social , Animais , Feminino , Asseio Animal , Masculino , Porto RicoRESUMO
The current extinction and climate change crises pressure us to predict population dynamics with ever-greater accuracy. Although predictions rest on the well-advanced theory of age-structured populations, two key issues remain poorly explored. Specifically, how the age-dependency in demographic rates and the year-to-year interactions between survival and fecundity affect stochastic population growth rates. We use inference, simulations and mathematical derivations to explore how environmental perturbations determine population growth rates for populations with different age-specific demographic rates and when ages are reduced to stages. We find that stage- vs. age-based models can produce markedly divergent stochastic population growth rates. The differences are most pronounced when there are survival-fecundity-trade-offs, which reduce the variance in the population growth rate. Finally, the expected value and variance of the stochastic growth rates of populations with different age-specific demographic rates can diverge to the extent that, while some populations may thrive, others will inevitably go extinct.
Assuntos
Aves , Mudança Climática , Extinção Biológica , Animais , Biodiversidade , Demografia , Feminino , Masculino , Modelos Biológicos , Dinâmica Populacional , Processos EstocásticosRESUMO
Network dynamics can reveal information about the adaptive function of social behaviour and the extent to which social relationships can flexibly respond to extrinsic pressures. Changes in social networks occur following changes to the social and physical environment. By contrast, we have limited understanding of whether changes in social networks precede major group events. Permanent evictions can be important determinants of gene flow and population structure and are a clear example of an event that might be preceded by social network dynamics. Here we examined the social networks of a group of rhesus macaques, Macaca mulatta, in the 2 years leading up to the eviction of 22% of adult females, which are the philopatric sex. We found that females engaged in the same amount of aggression and grooming in the 2 years leading up to the eviction but that there were clear changes in their choice of social partners. Females that would eventually be evicted received more aggression from lower-ranking females as the eviction approached. Evicted females also became more discriminating in their grooming relationships in the year nearer the split, showing a greater preference for one another and becoming more cliquish. Put simply, the females that would later be evicted continued to travel with the rest of the group as the eviction approached but were less likely to interact with other group members in an affiliative manner. These results have potential implications for understanding group cohesion and the balance between cooperation and competition that mediates social groups.
RESUMO
In polygynous primates, a greater reproductive variance in males have been linked to their reduced life expectancy relative to females. The mortality patterns of monogamous pair-bonded primates, however, are less clear. We analyzed the sex differences in mortality within wild (NMales = 70, NFemales = 73) and captive (NMales = 25, NFemales = 29) populations of Azara's owl monkeys (Aotus azarae), a socially and genetically monogamous primate exhibiting biparental care. We used Bayesian Survival Trajectory Analysis (BaSTA) to test age-dependent models of mortality. The wild and captive populations were best fit by the logistic and Gompertz models, respectively, implying greater heterogeneity in the wild environment likely due to harsher conditions. We found that age patterns of mortality were similar between the sexes in both populations. We calculated life expectancy and disparity, the latter a measure of the steepness of senescence, for both sexes in each population. Males and females had similar life expectancies in both populations; the wild population overall having a shorter life expectancy than the captive one. Furthermore, captive females had a reduced life disparity relative to captive males and to both sexes in the wild. We interpret this pattern in light of the hazards associated with reproduction. In captivity, where reproduction is intensely managed, the risks associated with gestation and birth are tempered so that there is a reduction in the likelihood of captive females dying prematurely, decreasing their overall life disparity.