Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 104(3): 3522-3531, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33358810

RESUMO

Staphylococcus aureus is one of the most frequent pathogens causing intramammary infections in dairy herds. Consequently, virulence factors, pathobiology, and epidemiology of Staphylococcus aureus strains have been widely assessed through the years. Nevertheless, not much has been described about the epidemiology of Staph. aureus strains from bulk tank milk (BTM) and adherences on milking equipment (AMES), even when these strains may play a role in the quality of milk that is intended for human consumption. The objective of this study was to assess the strain diversity of 166 Staph. aureus isolates collected from 3 consecutive BTM samples, and from AMES in contact with milk from 23 Chilean dairy farms. Isolates were analyzed and typed using pulsed-field gel electrophoresis. Diversity of strains, both within and among farms, was assessed using Simpson's index of diversity (SID). On farms where Staph. aureus was isolated from both AMES and BTM (n = 8), pulsotypes were further analyzed to evaluate the role of AMES as a potential source of Staph. aureus strains in BTM. Among all Staph. aureus analyzed by pulsed-field gel electrophoresis, a total of 42 pulsotypes (19 main pulsotypes and 23 subtypes) were identified. Among dairy farms, strain diversity was highly heterogeneous (SID = 0.99). Within dairy farms, Staph. aureus strain diversity was variable (SID = 0 to 1), and 18 dairy operations (81.8%) had one pulsotype that was shared between at least 2 successive BTM samples. In those farms where Staph. aureus was isolated in both AMES and BTM (n = 8), 7 (87.5%) showed a clonal distribution of Staph. aureus strains between these 2 types of samples. The overlapping of certain Staph. aureus strains among dairy farms may point out common sources of Staph. aureus among otherwise epidemiologically unrelated farms. Indistinguishable Staph. aureus strains between AMES and BTM across dairy farms suggest that Staph. aureus-containing AMES may represent a source for BTM contamination, thus affecting milk quality. Our study highlights the role of viable Staph. aureus in AMES as a source for BTM contamination on dairy farms, and also describes the overlapping and presence of specific BTM and AMES pulsotypes among farms.


Assuntos
Doenças dos Bovinos , Mastite Bovina , Infecções Estafilocócicas , Animais , Biofilmes , Bovinos , Chile , Indústria de Laticínios , Feminino , Leite , Infecções Estafilocócicas/veterinária , Staphylococcus aureus/genética
2.
J Dairy Sci ; 103(5): 4732-4737, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32113752

RESUMO

Staphylococcus aureus is an important intramammary pathogen for dairy cows that also is remarkably important for public health. Multiple virulence factors can be involved simultaneously during the pathogenesis of a staphylococcal disease, including adhesion proteins, extracellular enzymes, and toxins. The main objective of this study was to assess virulence factors that are associated with cow intramammary infection (IMI) and of human health concern among Staph. aureus isolates obtained from bulk tank milk (BTM) and adherences on milking equipment surfaces. A total of 166 Staph. aureus isolates from 23 dairy farms were characterized according to their virulence profiles. For virulence factors of importance in IMI, the presence of the virulence markers thermonuclease (nuc) and coagulase (coa) and virulence genes such as fibronectin (fnbA) and intercellular adhesion (icaA, icaD) were assessed. For virulence factors of public health concern, presence of antimicrobial resistance (mecA and mecC) and enterotoxin (sea and seb) genes were analyzed. Among all Staph. aureus isolates, 5 virulence profiles were found; the profile nuc(+)coa(+)fnbA(+)icaA(+)icaD(+)mecA(-)mecC(-)sea(-)seb(-) was the most frequently observed (21 out of 23 dairy farms). No differences were found between the virulence profile frequencies of Staph. aureus from BTM and adherences on milking equipment surfaces. The virulence profiles most frequently observed included genes involved in the adherence and biofilm-forming ability of Staph. aureus, which could represent a potential advantage for the bacterium during the early stages of IMI colonization and for persistence on surfaces. Our results indicate a greater frequency of virulence factors of importance for IMI pathogenesis than virulence factors of public health concern, consistent with the dairy origin of isolates. The mecA, mecC, and seb genes were not observed among Staph. aureus isolates analyzed in this study. However, the sea gene was detected in 3 Staph. aureus isolated from BTM, thus posing a potential public health threat. Our results emphasize the importance of understanding the epidemiology and dynamics of Staph. aureus on dairy farms as a tool for the improvement of udder health and milk safety.


Assuntos
Biofilmes/crescimento & desenvolvimento , Mastite Bovina/microbiologia , Leite/microbiologia , Infecções Estafilocócicas/veterinária , Staphylococcus aureus/patogenicidade , Fatores de Virulência/genética , Animais , Bovinos , Chile , Coagulase/genética , Indústria de Laticínios/instrumentação , Enterotoxinas/genética , Fazendas , Feminino , Glândulas Mamárias Animais/microbiologia , Nuclease do Micrococo/genética , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/fisiologia , Virulência
3.
J Dairy Sci ; 93(6): 2792-802, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20494189

RESUMO

The objective of this study was to assess the presence of a Listeria monocytogenes-containing biofilm in milking equipment as a potential source of bulk tank milk contamination on a dairy farm where milk contamination had been previously documented. Samples were collected from milking equipment and milking parlor premises on 4 occasions and analyzed for the presence of L. monocytogenes. Pulsed-field gel electrophoresis (PFGE) typing was conducted on L. monocytogenes isolates from the milking equipment, parlor and storage room floors, bulk tank milk, and in-line milk filters. Pieces from milk meters and rubber liners were obtained to visually assess the presence of a biofilm using scanning electron microscopy. A total of 6 (15%), 4 (25%), and 1 (6%) samples were culture-positive for L. monocytogenes in the first, second, and third sample collection, respectively. Two samples were L. monocytogenes hly PCR-positive but were culture-negative in the fourth sample collection. Combined AscI and ApaI restriction analysis yielded 6 PFGE types for 15 L. monocytogenes isolates obtained from milking equipment, parlor, bulk tank milk, and milk filters. A predominant and persistent PFGE type (PFGE type T) was observed among these L. monocytogenes isolates (9/15 isolates). Scanning electron microscopy of samples from the bottom cover of 2 milk meters showed the presence of individual and clusters of bacteria, mainly associated with surface scratches. The presence of a bacterial biofilm was observed on the bottom covers of the 2 milk meters. Prevention of the establishment of biofilms in milking equipment is a crucial step in fulfilling the requirement of safe, high-quality milk.


Assuntos
Biofilmes , Indústria de Laticínios , Contaminação de Alimentos , Listeria monocytogenes , Leite/microbiologia , Animais , Bovinos/microbiologia , Indústria de Laticínios/instrumentação , Eletroforese em Gel de Campo Pulsado , Manipulação de Alimentos , Listeria monocytogenes/isolamento & purificação , Microscopia Eletrônica de Varredura , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...