Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Vopr Virusol ; 69(2): 175-186, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843023

RESUMO

INTRODUCTION: The COVID-19 pandemic caused by SARS-CoV-2 has created serious health problems worldwide. The most effective way to prevent the occurrence of new epidemic outbreaks is vaccination. One of the modern and effective approaches to vaccine development is the use of virus-like particles (VLPs). The aim of the study is to develop a technology for production of VLP based on recombinant SARS-CoV-2 proteins (E, M, N and S) in insect cells. MATERIALS AND METHODS: Synthetic genes encoding coronavirus proteins E, M, N and S were used. VLP with various surface proteins of strains similar to the Wuhan virus, Delta, Alpha and Omicron were developed and cloned into the pFastBac plasmid. The proteins were synthesized in the baculovirus expression system and assembled into VLP in the portable Trichoplusia ni cell. The presence of insertion in the baculovirus genome was determined by PCR. ELISA and immunoblotting were used to study the antigenic activity of VLP. VLP purification was performed by ultracentrifugation using 20% sucrose. Morphology was assessed using electron microscopy and dynamic light scattering. RESULTS: VLPs consisting of recombinant SARS-CoV-2 proteins (S, M, E and N) were obtained and characterized. The specific binding of antigenic determinants in synthesized VLPs with antibodies to SARS-CoV-2 proteins has been demonstrated. The immunogenic properties of VLPs have been studied. CONCLUSION: The production and purification of recombinant VLPs consisting of full-length SARS-CoV-2 proteins with a universal set of surface antigens have been developed and optimized. Self-assembling particles that mimic the coronavirus virion induce a specific immune response against SARS-CoV-2.


Assuntos
Baculoviridae , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de Partículas Semelhantes a Vírus , Animais , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Humanos , COVID-19/virologia , COVID-19/imunologia , Baculoviridae/genética , Baculoviridae/metabolismo , Vacinas contra COVID-19/imunologia , Anticorpos Antivirais/imunologia , Proteínas M de Coronavírus/genética , Proteínas M de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia , Fosfoproteínas
2.
Vopr Virusol ; 68(5): 415-427, 2023 Nov 07.
Artigo em Russo | MEDLINE | ID: mdl-38156575

RESUMO

INTRODUCTION: In Russia, almost half of the cases of acute intestinal infections of established etiology in 2022 are due to rotavirus infection (RVI). There is no specific treatment for rotavirus gastroenteritis. There is a need to develop modern, effective and safe vaccines to combat rotavirus infection that are not capable of multiplying (replicating) in the body of the vaccinated person. A promising approach is to create vaccines based on virus-like particles (VLPs). OBJECTIVE: Study of the safety and immunogenicity of a vaccine against rotavirus infection based on virus-like particles of human rotavirus A in newborn minipigs with multiple intramuscular administration. MATERIALS AND METHODS: Newborn minipigs were used as an animal model in this study. The safety of the tested vaccine was assessed based on thermometry data, clinical examination, body weight gain, clinical and biochemical blood parameters, as well as necropsy and histological examination. When studying the immunogenic properties of the Gam-VLP-rota vaccine in doses of 30 and 120 µg, the cellular, humoral and secretory immune response was studied. RESULTS: The results of assessing the general condition of animals during the immunization period, data from clinical, laboratory and pathomorphological studies indicate the safety of the vaccine against human rotavirus infection based on VLP (Gam-VLP-rota) when administered three times intramuscularly. Good local tolerance of the tested vaccine was demonstrated. The results of the assessment of humoral immunity indicate the formation of a stable immune response after three-time immunization with Gam-VLP-rota, stimulation of the production of antigen-specific IgG antibodies and their functional activity to neutralize human rotavirus A. It was shown that following the triple immunization with the minimum tested concentration of 30 µg/dose, animals developed a cell-mediated immune response. The results of the IgA titer in blood serum and intestinal lavages indicate the formation of both a systemic immunological response and the formation of specific secretory immunity to human rotavirus A. CONCLUSION: Thus, three-time intramuscular immunization of minipigs with the Gam-VLP-rota vaccine forms stable protective humoral and cellular immunity in experimental animals. Evaluated vaccine is safe and has good local tolerability.


Assuntos
Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Recém-Nascido , Animais , Humanos , Suínos , Infecções por Rotavirus/prevenção & controle , Porco Miniatura , Anticorpos Antivirais , Vacinas contra Rotavirus/efeitos adversos
3.
Vopr Virusol ; 68(2): 161-171, 2023 05 18.
Artigo em Russo | MEDLINE | ID: mdl-37264851

RESUMO

INTRODUCTION: Rotavirus infection is one of the main concerns in infectious pathology in humans, mammals and birds. Newborn piglets or rodents are usually being used as a laboratory model for the evaluation of immunogenicity and efficacy for all types of vaccines against rotavirus A (RVA), and the use of ELISA for the detection of virus-specific antibodies of specific isotype is an essential step of this evaluation. OBJECTIVE: Development of indirect solid-phase ELISA with VP2/VP6 rotavirus VLP as an antigen to detect and assess the distribution of RVA-specific IgG, IgM and IgA in the immune response to rotavirus A. MATERIALS AND METHODS: VP2/VP6 rotavirus VLP production and purification, electron microscopy, PAGE, immunoblotting, ELISA, virus neutralization assay. RESULTS: The study presents the results of development of a recombinant baculovirus with RVA genes VP2-eGFP/VP6, assessment of its infectious activity and using it for VLP production. The morphology of the VP2/VP6 rotavirus VLPs was assessed, the structural composition was determined, and the high antigenic activity of the VLP was established. VLP-based ELISA assay was developed and here we report results for RVA-specific antibody detection in sera of different animals. CONCLUSION: The developed ELISA based on VP2/VP6 rotavirus VLP as a universal antigen makes it possible to detect separately IgG, IgM and IgA antibodies to rotavirus A, outlining its scientific and practical importance for the evaluation of immunogenicity and efficacy of traditional vaccines against rotavirus A and those under development.


Assuntos
Rotavirus , Humanos , Recém-Nascido , Animais , Suínos , Rotavirus/genética , Proteínas Recombinantes , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática , Imunoglobulina G , Imunoglobulina A , Imunidade , Imunoglobulina M , Antígenos Virais/genética , Mamíferos
4.
Vopr Virusol ; 66(1): 55-64, 2021 03 07.
Artigo em Russo | MEDLINE | ID: mdl-33683066

RESUMO

INTRODUCTION: Rotavirus infection is the leading cause of acute gastroenteritis among infants. The development of new vaccines against rotavirus A is urgent because the virus has many genotypes, some of which have regional prevalence. Virus-like particles (VLP) is a promising way to create effective and safe vaccine preparations.The purpose of the study is to develop the technology for the production of VLP, containing VP2, VP4, VP6 and VP7 of viral genotypes prevalent on the territory of the Russian Federation, and to give its molecular genetic and virological characteristics. MATERIAL AND METHODS: The virulent strain Wa G1P[8] of human RV A adapted to MARC-145 cell culture has been used. It was cultured and purified according to the method described by the authors earlier. Standard molecular genetic and cytological methods were used: gene synthesis; cloning into transfer plasmids; recombinant baculoviruses production in Bac-to-Bac expression system; VLP production in the insect cells; centrifugation in sucrose solution; enzyme-linked immunosorbent assay (ELISA); electron microscopy (EM); polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analysis. RESULTS: VP4 and VP7 of the six most represented in Russia genotypes: G1, G2, G4, G9, P4, P8, as well as VP2 and VP6 were selected for VLP production. Recombinant baculoviruses were obtained with codon frequencies optimized for insect cells. Cabbage loopper (Trichoplusia ni) cell culture was coinfected with different combinations of baculoviruses, and VLP consisting of 2-4 proteins were produced. VLP were purified by centrifugation. The size and morphology of the particles matched the rotavirus A virion (by EM). The presence of rotavirus A proteins in VLP was confirmed by the ELISA, SDS-PAGE and western blot analysis. CONCLUSION: The technology for the synthesis of three-layer VLP consisting of VP2, VP4, VP6 and VP7 has been developed and optimized. The resulting VLP composition represents 6 serotypes of VP4 and VP7, which are most represented on the territory of Russia, and can be used for vaccine development.


Assuntos
Reoviridae , Infecções por Rotavirus , Rotavirus , Humanos , Rotavirus/genética , Desenvolvimento de Vacinas , Vírion
5.
Vopr Virusol ; 64(4): 156-164, 2019.
Artigo em Russo | MEDLINE | ID: mdl-32163681

RESUMO

INTRODUCTION: Rotovirus infection (RVI) caused by the dsRNA-containing virus from genus Rotavirus, Reoviridae family, belonging to group A (RVA), is the cause of severe diarrhea in human and other mammalian species. Vaccination is the most effective way to reduce the incidence of RVI. At present, the effectiveness of using gnotobiotic piglets as a universal model for reproducing human rotavirus infection and assessing the quality of RVI vaccine preparations has been experimentally proven. OBJECTIVES: Evaluation of immunogenic activity of the cloned RVA Wa strain in the new-born Vietnamese potbellied piglets trial. MATERIAL AND METHODS: Development of viral preparations of the cloned human Wa strain PBA, development of human RVA rVP6, ELISA, polymerase chain reaction with reverse transcription, immunization and experimental infection of newborn piglets. RESULTS: The article presents the results of the experiment on double immunization of newborn piglets with native virus preparations with the infection activity 5.5 lg TCID50/ml, 3 cm3 per dose, HRV with adjuvant 500 µg per dose and mock preparation (control group) followed with experimental inoculation of all animals with virulent virus strain Wa G1P[8] human RVA with infectious activity of 5.5 lg TCID50/ml in 5 cm3 dose. Development of clinical signs of disease and animal death were observed only in control group. RT-PCR system to detect RVA RNA in rectal swabs, samples of small intestine and peripheral lymph nodes was developed. ELISA based on obtained human RVA rVP6 was developed and results on RVA-specific IgG-antibodies in serum samples of experimental piglets are presented. CONCLUSION: In the course of the research, a high immunogenic activity of the native and purified virus of the cloned Wa RVA strain Wa was established and the possibility of its use as the main component of the RVI vaccine was confirmed. The possibility of using conventional newborn pigs instead of gnotobiotic piglets as an experimental model was demonstrated.


Assuntos
Antígenos Virais/genética , Proteínas do Capsídeo/genética , Infecções por Reoviridae/genética , Reoviridae/genética , Rotavirus/genética , Animais , Animais Recém-Nascidos/imunologia , Animais Recém-Nascidos/virologia , Antígenos Virais/imunologia , Proteínas do Capsídeo/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Reoviridae/imunologia , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/prevenção & controle , Infecções por Reoviridae/virologia , Rotavirus/imunologia , Suínos , Vacinas Virais/imunologia
6.
ScientificWorldJournal ; 2018: 7360147, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29849510

RESUMO

Cosmic dust samples from the surface of the illuminator of the International Space Station (ISS) were collected by a crew member during his spacewalk. The sampler with tampon in a vacuum container was delivered to the Earth. Washouts from the tampon's material and the tampon itself were analyzed for the presence of bacterial DNA by the method of nested PCR with primers specific to DNA of the genus Mycobacteria, DNA of the strains of capsular bacteria Bacillus, and DNA encoding 16S ribosomal RNA. The results of amplification followed by sequencing and phylogenetic analysis indicated the presence of the bacteria of the genus Mycobacteria and the extreme bacterium of the genus Delftia in the samples of cosmic dust. It was shown that the DNA sequence of one of the bacteria of the genus Mycobacteria was genetically similar to that previously observed in superficial micro layer at the Barents and Kara seas' coastal zones. The presence of the wild land and marine bacteria DNA on the ISS suggests their possible transfer from the stratosphere into the ionosphere with the ascending branch of the global electric circuit. Alternatively, the wild land and marine bacteria as well as the ISS bacteria may all have an ultimate space origin.


Assuntos
Poeira Cósmica/análise , DNA Bacteriano/genética , Planeta Terra , Oceanos e Mares , Astronave , Sequência de Bases , Genes Bacterianos , Filogenia , RNA Ribossômico 16S/genética
7.
Sci Rep ; 8(1): 8078, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29799015

RESUMO

DNA vaccines require a considerable enhancement of immunogenicity. Here, we optimized a prototype DNA vaccine against drug-resistant HIV-1 based on a weak Th2-immunogen, HIV-1 reverse transcriptase (RT). We designed expression-optimized genes encoding inactivated wild-type and drug-resistant RTs (RT-DNAs) and introduced them into mice by intradermal injections followed by electroporation. RT-DNAs were administered as single or double primes with or without cyclic-di-GMP, or as a prime followed by boost with RT-DNA mixed with a luciferase-encoding plasmid ("surrogate challenge"). Repeated primes improved cellular responses and broadened epitope specificity. Addition of cyclic-di-GMP induced a transient increase in IFN-γ production. The strongest anti-RT immune response was achieved in a prime-boost protocol with electroporation by short 100V pulses done using penetrating electrodes. The RT-specific response, dominated by CD4+ T-cells, targeted epitopes at aa 199-220 and aa 528-543. Drug-resistance mutations disrupted the epitope at aa 205-220, while the CTL epitope at aa 202-210 was not affected. Overall, multiparametric optimization of RT strengthened its Th2- performance. A rapid loss of RT/luciferase-expressing cells in the surrogate challenge experiment revealed a lytic potential of anti-RT response. Such lytic CD4+ response would be beneficial for an HIV vaccine due to its comparative insensitivity to immune escape.


Assuntos
Vacinas contra a AIDS , Farmacorresistência Viral , Infecções por HIV/terapia , Transcriptase Reversa do HIV/imunologia , Células Th2/imunologia , Vacinação/métodos , Vacinas de DNA , Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/genética , Animais , Calibragem , Células Cultivadas , Códon , Sistemas de Liberação de Medicamentos , Farmacorresistência Viral/genética , Farmacorresistência Viral/imunologia , Epitopos/genética , Epitopos/imunologia , Infecções por HIV/imunologia , Transcriptase Reversa do HIV/genética , HIV-1/genética , HIV-1/imunologia , Células HeLa , Humanos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Imunização Secundária/métodos , Imunização Secundária/normas , Imunogenicidade da Vacina/genética , Camundongos , Camundongos Endogâmicos BALB C , Melhoria de Qualidade , Células Th2/metabolismo , Vacinação/normas , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética
8.
Vopr Virusol ; 59(5): 47-9, 2014.
Artigo em Russo | MEDLINE | ID: mdl-25895212

RESUMO

The results obtained using the diagnostic kit based on real-time polymerase chain reaction to detect the DNA of the African Swine Fever in the pathological material, as well as in the culture fluid, are presented. A high sensitivity and specificity for detection of the DNA in the organs and tissues of animals was shown to be useful for detection in the European Union referentiality reagent kits for DNA detection by real time PCR of ASFV. More rapid and effective method of DNA extraction using columns mini spin Quick gDNA(TM) MiniPrep was suggested and compared to the method of DNA isolation on the inorganic sorbent. High correlation of the results of the DNA detection of ASFV by real-time PCR and antigen detection results ASFV by competitive ELISA obtained with the ELISA SEROTEST/INGEZIM COMRAC PPA was demonstrated. The kit can be used in the veterinary services for effective monitoring of ASFV to contain, eliminate and prevent further spread of the disease.


Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/diagnóstico , DNA Viral/genética , Kit de Reagentes para Diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Febre Suína Africana/virologia , Animais , Antígenos Virais/imunologia , Primers do DNA/síntese química , Sondas de DNA/síntese química , DNA Viral/isolamento & purificação , Ensaio de Imunoadsorção Enzimática , Reação em Cadeia da Polimerase em Tempo Real/normas , Sensibilidade e Especificidade , Suínos
9.
Vopr Virusol ; 55(3): 4-9, 2010.
Artigo em Russo | MEDLINE | ID: mdl-20608074

RESUMO

The paper presents the results of the investigations of the development of a influenza A(H1N1)v pandemic, conducted by the D. I. Ivanovsky Research Institute of Virology, Russian Academy of Medical Sciences, and collaborating laboratories in the European part of Russia, in the Urals, Siberia, and in the Far East. In the prepandemic period (April 27 - June 11, 2009) its first diagnosis was established on May 21, 2009; the first strain was isolated on May 24, 2009; the data on complete genome sequencing were sent to the GenBank; the sensitivity of the strain to commercial antiviral commercial agents was studied. In the early pandemic period (June 11 - August 15), 73 patients who had come from 14 countries of Europe, America, and Asia were identified; 19 virus strains (partially or completely sequenced) were isolated. The pandemic period (August 15 - December 1) was marked by absolute dominance of pandemic influenza virus virtually in the absence of seasonal influenza; the first death caused by pandemic influenza was detected in late August; 3053 subjects were infected with the pandemic strain, as shown by polymerase chain reaction diagnosis; 202 strains were identified.


Assuntos
Surtos de Doenças , Vírus da Influenza A Subtipo H1N1 , Influenza Humana/epidemiologia , Animais , Antivirais/farmacologia , Linhagem Celular , Embrião de Galinha , Cães , Genoma Viral/genética , Humanos , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/mortalidade , Influenza Humana/virologia , Federação Russa/epidemiologia , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...