Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917562

RESUMO

Ebola virus (EBOV) is a virulent pathogen, notorious for inducing life-threatening hemorrhagic fever, that has been responsible for several outbreaks in Africa and remains a public health threat. Yet, its pathogenesis is still not completely understood. Although there have been numerous studies on host transcriptional response to EBOV, with an emphasis on the clinical features, the impact of EBOV infection on post-transcriptional regulatory elements, such as microRNAs (miRNAs), remains largely unexplored. MiRNAs are involved in inflammation and immunity and are believed to be important modulators of the host response to viral infection. Here, we have used small RNA sequencing (sRNA-Seq), qPCR and functional analyses to obtain the first comparative miRNA transcriptome (miRNome) of a human liver cell line (Huh7) infected with one of the following three EBOV strains: Mayinga (responsible for the first Zaire outbreak in 1976), Makona (responsible for the West Africa outbreak in 2013-2016) and the epizootic Reston (presumably innocuous to humans). Our results highlight specific miRNA-based immunity pathways and substantial differences between the strains beyond their clinical manifestation and pathogenicity. These analyses shed new light into the molecular signature of liver cells upon EBOV infection and reveal new insights into miRNA-based virus attack and host defense strategy.


Assuntos
Ebolavirus/metabolismo , Doença pelo Vírus Ebola/metabolismo , Fígado/metabolismo , MicroRNAs/biossíntese , RNA-Seq , Linhagem Celular Tumoral , Ebolavirus/genética , Doença pelo Vírus Ebola/genética , Humanos , Fígado/virologia , MicroRNAs/genética
2.
Front Cardiovasc Med ; 7: 31, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32266291

RESUMO

Despite improvements in donor screening and increasing efforts to avoid contamination and the spread of pathogens in clinical platelet concentrates (PCs), the risks of transfusion-transmitted infections remain important. Relying on an ultraviolet photo activation system, pathogen reduction technologies (PRTs), such as Intercept and Mirasol, utilize amotosalen, and riboflavin (vitamin B2), respectively, to mediate inactivation of pathogen nucleic acids. Although they are expected to increase the safety and prolong the shelf life of clinical PCs, these PRTs might affect the quality and function of platelets, as recently reported. Upon activation, platelets release microparticles (MPs), which are involved in intercellular communications and regulation of gene expression, thereby mediating critical cellular functions. Here, we have used small RNA sequencing (RNA-Seq) to document the effect of PRT treatment on the microRNA profiles of platelets and derived MPs. PRT treatment did not affect the microRNA profile of platelets. However, we observed a specific loading of certain microRNAs into platelet MPs, which was impaired by treatment with Intercept or its Additive solution (SSP+). Whereas, Intercept had an impact on the microRNA profile of platelet-derived MPs, Mirasol did not impact the microRNA profile of platelets and derived MPs, compared to non-treated control. Considering that platelet MPs are able to transfer their microRNA content to recipient cells, and that this content may exert biological activities, those findings suggest that PRT treatment of clinical PCs may modify the bioactivity of the platelets and MPs to be transfused and argue for further investigations into PRT-induced changes in clinical PC content and function.

3.
J Dairy Sci ; 103(1): 16-29, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31677838

RESUMO

MicroRNAs (miRNAs) are small gene-regulatory noncoding RNA that are highly enriched in cow milk. They are encapsulated in different extracellular vesicle (EV) subsets that protect them from the extracellular milieu and the harsh conditions of the gastrointestinal tract during digestion. Here, we isolated pellets enriched in 4 different EV subsets, via differential ultracentrifugation of commercial cow milk: 12,000 × g (P12K), 35,000 × g (P35K), 70,000 × g (P70K), and 100,000 × g (P100K). Small RNA sequencing (sRNA-Seq) analyses revealed an unprecedented level of diversity in the complete miRNA repertoire and features of unfractionated cow milk and derived EV subsets. Although 5 miRNA sequences represented more than 50% of all miRNAs, milk EV exhibited heterogeneous content of miRNAs and isomeric variants (termed isomiR): P100K EV were enriched in reference miRNA sequences, and P12K and P35K EV in related isomiR. Incubation of milk EV with human cultured HeLa cells led to cellular enrichment in miRNA miR-223, which was concomitant with decreased expression of a reporter gene placed under the control of miR-223, thereby demonstrating the functionality of miR-223. These results suggest that cow milk EV may transfer their miRNAs to human cells and regulate recipient cell gene expression programming in a manner as complex as that of their miRNA transcriptome. The biological activity and relevance of the different milk EV subsets and bioactive mediators, including small noncoding RNA, in health and disease, warrants further investigation.


Assuntos
Vesículas Extracelulares/química , MicroRNAs/síntese química , Transcriptoma/fisiologia , Ultracentrifugação/veterinária , Animais , Bovinos , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Feminino , Regulação da Expressão Gênica , Células HeLa , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Leite/metabolismo , Análise de Sequência de RNA
4.
Int J Cancer ; 143(4): 944-957, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29516499

RESUMO

Adrenocortical carcinoma (ACC) is a tumor with poor prognosis in which overexpression of a panel of microRNAs has been associated with malignancy but a very limited number of investigations on their role in ACC pathogenesis have been conducted. We examined the involvement of miR-483-5p and miR-139-5p in adrenocortical cancer aggressiveness. Using bioinformatics predictions and mRNA/miRNA expression profiles, we performed an integrated analysis to identify inversely correlated miRNA-mRNA pairs in ACC. We identified N-myc downstream-regulated gene family members 2 and 4 (NDRG2 and NDRG4) as targets of miR-483-5p and miR-139-5p, respectively. NDRG2 and NDRG4 expressions were inversely correlated respectively with miR-483-5p and miR-139-5p levels in aggressive ACC samples from two independent cohorts of 20 and 44 ACC. Moreover, upregulation of miR-139-5p and downregulation of NDRG4 demonstrated a striking prognostic value. A direct interaction between miR-483-5p or miR-139-5p and their targets was demonstrated in reporter assays. Downregulation of miR-483-5p or miR-139-5p in the ACC cell lines NCI-H295R and SW13 increased NDRG2 or NDRG4 mRNA and protein expression, compromised adrenocortical cancer cell invasiveness and anchorage-independent growth. MiR-483-5p or miR-139-5p overexpression and NDRG2 or NDRG4 inhibition produce similar changes, which are rescued by NDRG2 or NDRG4 ectopic expression. We established that key factors mediating epithelial-to-mesenchymal transition are downstream effectors of miR-483-5p/NDRG2 and miR-139-5p/NDRG4 pathways. Collectively, our data show for the first time that miR-483-5p/NDRG2 and miR-139-5p/NDRG4 axes promote ACC aggressiveness, with potential implications for prognosis and therapeutic interventions in adrenocortical malignancies.


Assuntos
Neoplasias do Córtex Suprarrenal/genética , Neoplasias do Córtex Suprarrenal/patologia , Regulação Neoplásica da Expressão Gênica , Genes myc , MicroRNAs/fisiologia , Família Multigênica , Regiões 3' não Traduzidas , Apoptose/fisiologia , Adesão Celular/fisiologia , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Regulação para Baixo , Transição Epitelial-Mesenquimal , Células HEK293 , Humanos , MicroRNAs/genética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Estadiamento de Neoplasias , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Prognóstico , RNA Mensageiro/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima
5.
Platelets ; 29(1): 2-8, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28523956

RESUMO

The transfusion of platelets is essential for diverse pathological conditions associated with thrombocytopenia or platelet disorders. To maintain optimal platelet quality and functions, platelets are stored as platelet concentrates (PCs) at room temperature under continuous agitation-conditions that are permissive for microbial proliferation. In order to reduce these contaminants, pathogen reduction technologies (PRTs) were developed by the pharmaceutical industry and subsequently implemented by blood banks. PRTs rely on chemically induced cross-linking and inactivation of nucleic acids. These technologies were initially introduced for the treatment of plasma and, more recently, for PCs given the absence of a nucleus in platelets. Several studies verified the effectiveness of PRTs to inactivate a broad array of bacteria, viruses, and parasites. However, the safety of PRT-treated platelets has been questioned in other studies, which focused on the impact of PRTs on platelet quality and functions. In this article, we review the literature regarding PRTs, and present the advantages and disadvantages related to their application in platelet transfusion medicine.


Assuntos
Controle de Infecções/métodos , Transfusão de Plaquetas/métodos , Transfusão de Plaquetas/normas , Plaquetas/citologia , Plaquetas/fisiologia , Preservação de Sangue/métodos , Preservação de Sangue/normas , Micropartículas Derivadas de Células , Citocinas/metabolismo , Humanos , Contagem de Leucócitos , Mitocôndrias/metabolismo , Testes de Função Plaquetária , Proteoma
6.
J Extracell Vesicles ; 6(1): 1401897, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29904572

RESUMO

MicroRNAs are small gene-regulatory RNAs that are found in various biological fluids, including milk, where they are often contained inside extracellular vesicles (EVs), like exosomes. In a previous study, we reported that commercial dairy cow's milk microRNAs resisted simulated digestion and were not exclusively associated with canonical exosomes. Here, we report the characterization of a milk EV subset that sediments at lower ultracentrifugation speeds and that contains the bulk of microRNAs. Milk EVs were isolated by differential ultracentrifugation and Iodixanol density gradient (IDG), and analysed for (1) microRNA enrichment by reverse transcription and quantitative polymerase chain reaction (RT-qPCR), and (2) EV-associated proteins by Western blot. Milk EVs were characterized further by dynamic light scattering (DLS), density measurements, fluorescent DiR and RNA labelling, high-sensitivity flow cytometry (HS-FCM), transmission electron microscopy (TEM), proteinase K and RNase A assay, and liquid chromatography tandem-mass spectrometry (LC-MS/MS). We found that the bulk of milk microRNAs (e.g., bta-miR-125b, bta-miR-148a, etc.) sediment at 12,000 g and 35,000 g. Their distribution pattern was different from that of exosome-enriched proteins, but similar to that of several proteins commonly found in milk fat globule membranes (MFGM), including xanthine dehydrogenase (XDH). These low-speed ultracentrifugation pellets contained cytoplasm-enclosing phospholipid bilayered membrane vesicles of a density comprised between 1.11 and 1.14 g/mL in Iodixanol. This milk EV subset of ~100 nm in diameter/~200 nm hydrodynamic size resisted to proteinase K digestion and protected their microRNA content from RNase A digestion. Our results support the existence of a milk EV subset pelleting at low ultracentrifugations speeds, with a protein coating comparable with MFGM, which contains and protects the bulk of milk microRNAs from degradation. This milk EV subset may represent a new EV population of interest, whose content in microRNAs and proteins supports its potential bioactivity.

7.
J Nutr ; 146(11): 2206-2215, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27708120

RESUMO

BACKGROUND: MicroRNAs are small, gene-regulatory noncoding RNA species present in large amounts in milk, where they seem to be protected against degradative conditions, presumably because of their association with exosomes. OBJECTIVE: We monitored the relative stability of commercial dairy cow milk microRNAs during digestion and examined their associations with extracellular vesicles (EVs). METHODS: We used a computer-controlled, in vitro, gastrointestinal model TNO intestinal model-1 (TIM-1) and analyzed, by quantitative polymerase chain reaction, the concentration of 2 microRNAs within gastrointestinal tract compartments at different points in time. EVs within TIM-1 digested and nondigested samples were studied by immunoblotting, dynamic light scattering, quantitative polymerase chain reaction, and density measurements. RESULTS: A large quantity of dairy milk Bos taurus microRNA-223 (bta-miR-223) and bta-miR-125b (∼109-1010 copies/300 mL milk) withstood digestion under simulated gastrointestinal tract conditions, with the stomach causing the most important decrease in microRNA amounts. A large quantity of these 2 microRNAs (∼108-109 copies/300 mL milk) was detected in the upper small intestine compartments, which supports their potential bioaccessibility. A protocol optimized for the enrichment of dairy milk exosomes yielded a 100,000 × g pellet fraction that was positive for the exosomal markers tumor susceptibility gene-101 (TSG101), apoptosis-linked gene 2-interacting protein X (ALIX), and heat shock protein 70 (HSP70) and containing bta-miR-223 and bta-miR-125b. This approach, based on successive ultracentrifugation steps, also revealed the existence of ALIX-, HSP70-/low, and TSG101-/low EVs larger than exosomes and 2-6 times more enriched in bta-miR-223 and bta-miR-125b (P < 0.05). CONCLUSIONS: Our findings indicate that commercial dairy cow milk contains numerous microRNAs that can resist digestion and are associated mostly with ALIX-, HSP70-/low, and TSG101-/low EVs. Our results support the existence of interspecies transfer of microRNAs mediated by milk consumption and challenge our current view of exosomes as the sole carriers of milk-derived microRNAs.


Assuntos
Bovinos , Digestão , MicroRNAs/química , MicroRNAs/metabolismo , Leite/química , Animais , Exossomos , Trato Gastrointestinal , Modelos Biológicos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...