Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 14(1): 249-264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164151

RESUMO

Rationale: 17ß-estradiol (E2) can directly promote the growth of ERα-negative cancer cells through activation of endothelial ERα in the tumor microenvironment, thereby increasing a normalized tumor angiogenesis. ERα acts as a transcription factor through its nuclear transcriptional AF-1 and AF-2 transactivation functions, but membrane ERα plays also an important role in endothelium. The present study aims to decipher the respective roles of these two pathways in ERα-negative tumor growth. Moreover, we delineate the actions of tamoxifen, a Selective Estrogen Receptor Modulator (SERM) in ERα-negative tumors growth and angiogenesis, since we recently demonstrated that tamoxifen impacts vasculature functions through complex modulation of ERα activity. Methods: ERα-negative B16K1 cancer cells were grafted into immunocompetent mice mutated for ERα-subfunctions and tumor growths were analyzed in these different models in response to E2 and/or tamoxifen treatment. Furthermore, RNA sequencings were analyzed in endothelial cells in response to these different treatments and validated by RT-qPCR and western blot. Results: We demonstrate that both nuclear and membrane ERα actions are required for the pro-tumoral effects of E2, while tamoxifen totally abrogates the E2-induced in vivo tumor growth, through inhibition of angiogenesis but promotion of vessel normalization. RNA sequencing indicates that tamoxifen inhibits the E2-induced genes, but also initiates a specific transcriptional program that especially regulates angiogenic genes and differentially regulates glycolysis, oxidative phosphorylation and inflammatory responses in endothelial cells. Conclusion: These findings provide evidence that tamoxifen specifically inhibits angiogenesis through a reprogramming of endothelial gene expression via regulation of some transcription factors, that could open new promising strategies to manage cancer therapies affecting the tumor microenvironment of ERα-negative tumors.


Assuntos
Neoplasias , Tamoxifeno , Camundongos , Animais , Tamoxifeno/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Células Endoteliais/metabolismo , Angiogênese , Expressão Gênica , Endotélio/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral/genética
2.
FEBS Lett ; 598(10): 1170-1198, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38140813

RESUMO

Perilipins are abundant lipid droplet (LD) proteins present in all metazoans and also in Amoebozoa and fungi. Humans express five perilipins, which share a similar domain organization: an amino-terminal PAT domain and an 11-mer repeat region, which can fold into amphipathic helices that interact with LDs, followed by a structured carboxy-terminal domain. Variations of this organization that arose during vertebrate evolution allow for functional specialization between perilipins in relation to the metabolic needs of different tissues. We discuss how different features of perilipins influence their interaction with LDs and their cellular targeting. PLIN1 and PLIN5 play a direct role in lipolysis by regulating the recruitment of lipases to LDs and LD interaction with mitochondria. Other perilipins, particularly PLIN2, appear to protect LDs from lipolysis, but the molecular mechanism is not clear. PLIN4 stands out with its long repetitive region, whereas PLIN3 is most widely expressed and is used as a nascent LD marker. Finally, we discuss the genetic variability in perilipins in connection with metabolic disease, prominent for PLIN1 and PLIN4, underlying the importance of understanding the molecular function of perilipins.


Assuntos
Gotículas Lipídicas , Perilipinas , Humanos , Gotículas Lipídicas/metabolismo , Animais , Perilipinas/metabolismo , Perilipinas/genética , Metabolismo dos Lipídeos , Lipólise , Perilipina-1/metabolismo , Perilipina-1/genética
3.
JCI Insight ; 8(5)2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36729672

RESUMO

The main estrogen, 17ß-estradiol (E2), exerts several beneficial vascular actions through estrogen receptor α (ERα) in endothelial cells. However, the impact of other natural estrogens such as estriol (E3) and estetrol (E4) on arteries remains poorly described. In the present study, we report the effects of E3 and E4 on endothelial healing after carotid artery injuries in vivo. After endovascular injury, which preserves smooth muscle cells (SMCs), E2, E3, and E4 equally stimulated reendothelialization. By contrast, only E2 and E3 accelerated endothelial healing after perivascular injury that destroys both endothelial cells and SMCs, suggesting an important role of this latter cell type in E4's action, which was confirmed using Cre/lox mice inactivating ERα in SMCs. In addition, E4 mediated its effects independently of ERα membrane-initiated signaling, in contrast with E2. Consistently, RNA sequencing analysis revealed that transcriptomic and cellular signatures in response to E4 profoundly differed from those of E2. Thus, whereas acceleration of endothelial healing by estrogens had been viewed as entirely dependent on endothelial ERα, these results highlight the very specific pharmacological profile of the natural estrogen E4, revealing the importance of dialogue between SMCs and endothelial cells in its arterial protection.


Assuntos
Células Endoteliais , Estrogênios , Animais , Camundongos , Estrogênios/farmacologia , Receptor alfa de Estrogênio/genética , Estradiol/farmacologia , Artérias
4.
Front Pharmacol ; 13: 1049696, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532779

RESUMO

Human P2Y4 is a UTP receptor, while in mice it is activated by both ATP and UTP. P2Y4 knockout (KO) in mice protects against myocardial infarction and is characterized by increased adiponectin secretion by adipocytes, and decreased cardiac inflammation and permeability under ischemic conditions. The relevance of these data has, however, not been explored to date in humans. In a population study comprising 50 patients with coronary artery disease (CAD) and 50 age-matched control individuals, we analyzed P2RY4 mutations and their potential association with CAD severity and fasting plasma parameters. Among the mutations identified, we focused our attention on a coding region polymorphism (rs3745601) that results in replacement of the asparagine at residue 178 with threonine (N178T) located in the second extracellular loop of the P2Y4 receptor. The N178T variant is a loss-of-function mutation of the human P2Y4 receptor and is encountered less frequently in coronary patients than in control individuals. In coronary patients, carriers of the N178T variant had significantly reduced jeopardy and Gensini cardiac severity scores, as well as lower resting heart rates and plasma levels of N-terminal pro-brain natriuretic peptide (NT-proBNP). Regarding fasting plasma parameters, the N178T variant was associated with a lower concentration of glucose. Accordingly, P2Y4 KO mice had significantly improved glucose tolerance and insulin sensitivity compared with their WT littermate controls. The improvement of insulin sensitivity resulting from lack of the P2Y4 receptor was no longer observed in the absence of adiponectin. The present study identifies a frequent loss-of-function P2Y4 variant associated with less severe coronary artery atherosclerosis and lower fasting plasma glucose in coronary patients. The role of the P2Y4 receptor in glucose homeostasis was confirmed in mouse. P2Y4 antagonists could thus have therapeutic applications in the treatment of myocardial infarction and type 2 diabetes.

5.
Nutrients ; 14(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35956295

RESUMO

Dietary amines have been the subject of a novel interest in nutrition since the discovery of trace amine-associated receptors (TAARs), especially TAAR-1, which recognizes tyramine, phenethylamine, tryptamine, octopamine, N-methyltyramine (NMT), synephrine, amphetamine and related derivatives. Alongside the psychostimulant properties of TAAR-1 ligands, it is their ephedrine-like action on weight loss that drives their current consumption via dietary supplements advertised for 'fat-burning' properties. Among these trace amines, tyramine has recently been described, at high doses, to exhibit an antilipolytic action and activation of glucose transport in human adipocytes, i.e., effects that are facilitating lipid storage rather than mobilization. Because of its close structural similarity to tyramine, NMT actions on human adipocytes therefore must to be reevaluated. To this aim, we studied the lipolytic and antilipolytic properties of NMT together with its interplay with insulin stimulation of glucose transport along with amine oxidase activities in adipose cells obtained from women undergoing abdominal surgery. NMT activated 2-deoxyglucose uptake when incubated with freshly isolated adipocytes at 0.01-1 mM, reaching one-third of the maximal stimulation by insulin. However, when combined with insulin, NMT limited by half the action of the lipogenic hormone on glucose transport. The NMT-induced stimulation of hexose uptake was sensitive to inhibitors of monoamine oxidases (MAO) and of semicarbazide-sensitive amine oxidase (SSAO), as was the case for tyramine and benzylamine. All three amines inhibited isoprenaline-induced lipolysis to a greater extent than insulin, while they were poorly lipolytic on their own. All three amines-but not isoprenaline-interacted with MAO or SSAO. Due to these multiple effects on human adipocytes, NMT cannot be considered as a direct lipolytic agent, potentially able to improve lipid mobilization and fat oxidation in consumers of NMT-containing dietary supplements.


Assuntos
Amina Oxidase (contendo Cobre) , p-Hidroxianfetamina , Adipócitos , Amina Oxidase (contendo Cobre)/metabolismo , Feminino , Glucose/metabolismo , Humanos , Insulina/metabolismo , Monoaminoxidase/metabolismo , Tiramina/análogos & derivados , Tiramina/metabolismo , Tiramina/farmacologia , p-Hidroxianfetamina/metabolismo , p-Hidroxianfetamina/farmacologia
6.
Arterioscler Thromb Vasc Biol ; 40(9): 2143-2158, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32640903

RESUMO

OBJECTIVE: ERα (estrogen receptor alpha) exerts nuclear genomic actions and also rapid membrane-initiated steroid signaling. The mutation of the cysteine 451 into alanine in vivo has recently revealed the key role of this ERα palmitoylation site on some vasculoprotective actions of 17ß-estradiol (E2) and fertility. Here, we studied the in vivo role of the arginine 260 of ERα which has also been described to be involved in its E2-induced rapid signaling with PI-3K (phosphoinositide 3-kinase) as well as G protein in cultured cell lines. Approach and Results: We generated a mouse model harboring a point mutation of the murine counterpart of this arginine into alanine (R264A-ERα). In contrast to the C451A-ERα, the R264A-ERα females are fertile with standard hormonal serum levels and normal control of hypothalamus-pituitary ovarian axis. Although R264A-ERα protein abundance was normal, the well-described membrane ERα-dependent actions of estradiol, such as the rapid dilation of mesenteric arteries and the acceleration of endothelial repair of carotid, were abrogated in R264A-ERα mice. In striking contrast, E2-regulated gene expression was highly preserved in the uterus and the aorta, revealing intact nuclear/genomic actions in response to E2. Consistently, 2 recognized nuclear ERα-dependent actions of E2, namely atheroma prevention and flow-mediated arterial remodeling were totally preserved. CONCLUSIONS: These data underline the exquisite role of arginine 264 of ERα for endothelial membrane-initiated steroid signaling effects of E2 but not for nuclear/genomic actions. This provides the first model of fertile mouse with no overt endocrine abnormalities with specific loss-of-function of rapid ERα signaling in vascular functions.


Assuntos
Lesões das Artérias Carótidas/tratamento farmacológico , Endotélio Vascular/efeitos dos fármacos , Estradiol/farmacologia , Receptor alfa de Estrogênio/agonistas , Terapia de Reposição de Estrogênios , Estrogênios/farmacologia , Fertilidade/efeitos dos fármacos , Artérias Mesentéricas/efeitos dos fármacos , Mutação Puntual , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/fisiopatologia , Proliferação de Células/efeitos dos fármacos , Endotélio Vascular/lesões , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Ativação Enzimática , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Ciclo Estral/efeitos dos fármacos , Feminino , Masculino , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III/metabolismo , Ovariectomia , Reepitelização/efeitos dos fármacos , Transdução de Sinais , Fatores de Tempo , Útero/efeitos dos fármacos , Útero/metabolismo , Remodelação Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
7.
Cells ; 9(3)2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111004

RESUMO

During carcinogenesis, almost all the biological processes are modified in one way or another. Among these biological processes affected, anomalies in protein synthesis are common in cancers. Indeed, cancer cells are subjected to a wide range of stresses, which include physical injuries, hypoxia, nutrient starvation, as well as mitotic, oxidative or genotoxic stresses. All of these stresses will cause the accumulation of unfolded proteins in the Endoplasmic Reticulum (ER), which is a major organelle that is involved in protein synthesis, preservation of cellular homeostasis, and adaptation to unfavourable environment. The accumulation of unfolded proteins in the endoplasmic reticulum causes stress triggering an unfolded protein response in order to promote cell survival or to induce apoptosis in case of chronic stress. Transcription and also translational reprogramming are tightly controlled during the unfolded protein response to ensure selective gene expression. The majority of stresses, including ER stress, induce firstly a decrease in global protein synthesis accompanied by the induction of alternative mechanisms for initiating the translation of mRNA, later followed by a translational recovery. After a presentation of ER stress and the UPR response, we will briefly present the different modes of translation initiation, then address the specific translational regulatory mechanisms acting during reticulum stress in cancers and highlight the importance of translational control by ER stress in tumours.


Assuntos
Estresse do Retículo Endoplasmático , Neoplasias/metabolismo , Neoplasias/patologia , Biossíntese de Proteínas , Animais , Humanos , Modelos Biológicos , Transdução de Sinais , Resposta a Proteínas não Dobradas
8.
Cancers (Basel) ; 11(2)2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30691003

RESUMO

Delta-like 4 (DLL4) is a pivotal endothelium specific Notch ligand that has been shown to function as a regulating factor during physiological and pathological angiogenesis. DLL4 functions as a negative regulator of angiogenic branching and sprouting. Interestingly, Dll4 is with Vegf-a one of the few examples of haplo-insufficiency, resulting in obvious vascular abnormalities and in embryonic lethality. These striking phenotypes are a proof of concept of the crucial role played by the bioavailability of VEGF and DLL4 during vessel patterning and that there must be a very fine-tuning of DLL4 expression level. However, to date the expression regulation of this factor was poorly studied. In this study, we showed that the DLL4 5'-UTR harbors an Internal Ribosomal Entry Site (IRES) that, in contrast to cap-dependent translation, was efficiently utilized in cells subjected to several stresses including hypoxia and endoplasmic reticulum stress (ER stress). We identified PERK, a kinase activated by ER stress, as the driver of DLL4 IRES-mediated translation, and hnRNP-A1 as an IRES-Trans-Acting Factor (ITAF) participating in the IRES-dependent translation of DLL4 during endoplasmic reticulum stress. The presence of a stress responsive internal ribosome entry site in the DLL4 msRNA suggests that the process of alternative translation initiation, by controlling the expression of this factor, could have a crucial role in the control of endothelial tip cell function.

9.
Mol Metab ; 15: 56-69, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29807870

RESUMO

BACKGROUND: In addition to their crucial role in reproduction, estrogens are key regulators of energy and glucose homeostasis and they also exert several cardiovascular protective effects. These beneficial actions are mainly mediated by estrogen receptor alpha (ERα), which is widely expressed in metabolic and vascular tissues. As a member of the nuclear receptor superfamily, ERα was primarily considered as a transcription factor that controls gene expression through the activation of its two activation functions (ERαAF-1 and ERαAF-2). However, besides these nuclear actions, a pool of ERα is localized in the vicinity of the plasma membrane, where it mediates rapid signaling effects called membrane-initiated steroid signals (MISS) that have been well described in vitro, especially in endothelial cells. SCOPE OF THE REVIEW: This review aims to summarize our current knowledge of the mechanisms of nuclear vs membrane ERα activation that contribute to the cardiometabolic protection conferred by estrogens. Indeed, new transgenic mouse models (affecting either DNA binding, activation functions or membrane localization), together with the use of novel pharmacological tools that electively activate membrane ERα effects recently allowed to begin to unravel the different modes of ERα signaling in vivo. CONCLUSION: Altogether, available data demonstrate the prominent role of ERα nuclear effects, and, more specifically, of ERαAF-2, in the preventive effects of estrogens against obesity, diabetes, and atheroma. However, membrane ERα signaling selectively mediates some of the estrogen endothelial/vascular effects (NO release, reendothelialization) and could also contribute to the regulation of energy balance, insulin sensitivity, and glucose metabolism. Such a dissection of ERα biological functions related to its subcellular localization will help to understand the mechanism of action of "old" ER modulators and to design new ones with an optimized benefit/risk profile.


Assuntos
Miócitos Cardíacos/metabolismo , Receptores de Estrogênio/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Núcleo Celular/metabolismo , Estrogênios/metabolismo , Humanos , Receptores de Estrogênio/genética , Transdução de Sinais
10.
Breast Cancer Res ; 18(1): 123, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27927249

RESUMO

BACKGROUND: To date, all studies conducted on breast cancer diagnosis have focused on the expression of the full-length 66-kDa estrogen receptor alpha (ERα66). However, much less attention has been paid to a shorter 46-kDa isoform (ERα46), devoid of the N-terminal region containing the transactivation function AF-1. Here, we investigated the expression levels of ERα46 in breast tumors in relation to tumor grade and size, and examined the mechanism of its generation and its specificities of coregulatory binding and its functional activities. METHODS: Using approaches combining immunohistochemistry, Western blotting, and proteomics, antibodies allowing ERα46 detection were identified and the expression levels of ERα46 were quantified in 116 ERα-positive human breast tumors. ERα46 expression upon cellular stress was studied, and coregulator bindings, transcriptional, and proliferative response were determined to both ERα isoforms. RESULTS: ERα46 was expressed in over 70% of breast tumors at variable levels which sometimes were more abundant than ERα66, especially in differentiated, lower-grade, and smaller-sized tumors. We also found that ERα46 can be generated via internal ribosome entry site-mediated translation in the context of endoplasmic reticulum stress. The binding affinities of both unliganded and fully-activated receptors towards co-regulator peptides revealed that the respective potencies of ERα46 and ERα66 differ significantly, contributing to the differential transcriptional activity of target genes to 17ß estradiol (E2). Finally, increasing amounts of ERα46 decrease the proliferation rate of MCF7 tumor cells in response to E2. CONCLUSIONS: We found that, besides the full-length ERα66, the overlooked ERα46 isoform is also expressed in a majority of breast tumors. This finding highlights the importance of the choice of antibodies used for the diagnosis of breast cancer, which are able or not to detect the ERα46 isoform. In addition, since the function of both ERα isoforms differs, this work underlines the need to develop new technologies in order to discriminate ERα66 and ERα46 expression in breast cancer diagnosis which could have potential clinical relevance.


Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Regulação Neoplásica da Expressão Gênica , Processamento Alternativo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Análise por Conglomerados , Estresse do Retículo Endoplasmático , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Ligação Proteica , Biossíntese de Proteínas , Isoformas de Proteínas , Proteoma , Proteômica/métodos , Estudos Retrospectivos
11.
Med Sci (Paris) ; 31(12): 1083-91, 2015 Dec.
Artigo em Francês | MEDLINE | ID: mdl-26672661

RESUMO

Estrogen receptors (ER) are used as therapeutic targets, either for contraception or for the hormonal replacement therapy in menopausal women, but also in physiopathology for breast cancer treatment. It is therefore important to understand the tissue-specificity of the actions of ERα to optimize the benefits/risks ratio in each tissue. Besides the conventional nuclear ERα acting as a transcription factor, many studies have demonstrated that ERα is also able to mediate extra nuclear signaling, enabling rapid actions of estrogen. Recently, new transgenic mouse models were used to study these effects, and allowed to genetically segregate membrane versus nuclear actions of a steroid hormone receptor, demonstrating their in vivo tissue-specific roles.


Assuntos
Receptor alfa de Estrogênio/fisiologia , Animais , Humanos , Especificidade de Órgãos/fisiologia
12.
Endocrinology ; 154(6): 2222-33, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23580568

RESUMO

Estrogen receptor-α (ERα) regulates gene transcription through the 2 activation functions (AFs) AF-1 and AF-2. The crucial role of ERαAF-2 was previously demonstrated for endometrial proliferative action of 17ß-estradiol (E2). Here, we investigated the role of ERαAF-1 in the regulation of gene transcription and cell proliferation in the uterus. We show that acute treatment with E2 or tamoxifen, which selectively activates ERαAF-1, similarly regulate the expression of a uterine set of estrogen-dependent genes as well as epithelial cell proliferation in the uterus of wild-type mice. These effects were abrogated in mice lacking ERαAF-1 (ERαAF-1(0)). Four weeks of E2 treatment led to uterine hypertrophy and sustained luminal epithelial and stromal cell proliferation in wild-type mice, but not in ERαAF-1(0) mice. However, ERαAF-1(0) mice still presented a moderate uterine hypertrophy essentially due to a stromal edema, potentially due to the persistence of Vegf-a induction. Epithelial apoptosis is largely decreased in these ERαAF-1(0) uteri, and response to progesterone is also altered. Finally, E2-induced proliferation of an ERα-positive epithelial cancer cell line was also inhibited by overexpression of an inducible ERα isoform lacking AF-1. Altogether, these data highlight the crucial role of ERαAF-1 in the E2-induced proliferative response in vitro and in vivo. Because ERαAF-1 was previously reported to be dispensable for several E2 extrareproductive protective effects, an optimal ERα modulation could be obtained using molecules activating ERα with a minimal ERαAF-1 action.


Assuntos
Proliferação de Células , Células Epiteliais/metabolismo , Receptor alfa de Estrogênio/genética , Útero/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Sítios de Ligação/genética , Células Epiteliais/efeitos dos fármacos , Estradiol/farmacologia , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Imuno-Histoquímica , Antígeno Ki-67/metabolismo , Células MCF-7 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovariectomia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Tamoxifeno/farmacologia , Útero/citologia
13.
Steroids ; 78(6): 576-82, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23200732

RESUMO

Estrogens influence most of the physiological processes in mammals, including but not limited to reproduction, cognition, behavior, vascular system, metabolism and bone integrity. Given this widespread role for estrogen in human physiology, it is not surprising that estrogen influence the pathophysiology of numerous diseases, including cancer (of the reproductive tract as breast, endometrial but also colorectal, prostate,…), as well as neurodegenerative, inflammatory-immune, cardiovascular and metabolic diseases, and osteoporosis. These actions are mediated by the activation of estrogen receptors (ER) alpha (ERα) and beta (ERß), which regulate target gene transcription (genomic action) through two independent activation functions (AF)-1 and AF-2, but can also elicit rapid membrane initiated steroid signals (MISS). Targeted ER gene inactivation has shown that although ERß plays an important role in the central nervous system and in the heart, ERα appears to play a prominent role in most of the other tissues. Pharmacological activation or inhibition of ERα and/or ERß provides already the basis for many therapeutic interventions, from hormone replacement at menopause to prevention of the recurrence of breast cancer. However, the use of these estrogens or selective estrogen receptors modulators (SERMs) have also induced undesired effects. Thus, an important challenge consists now to uncouple the beneficial actions from other deleterious ones. The in vivo molecular "dissection" of ERα represents both a molecular and integrated approach that already allowed to delineate in mouse the role of the main "subfunctions" of the receptor and that could pave the way to an optimization of the ER modulation.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/genética , Humanos , Camundongos , Receptores de Glucocorticoides/deficiência , Receptores de Glucocorticoides/genética
14.
Nucleic Acids Res ; 40(7): e51, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22228834

RESUMO

Genomic DNA (gDNA) contamination is an inherent problem during RNA purification that can lead to non-specific amplification and aberrant results in reverse transcription quantitative PCR (RT-qPCR). Currently, there is no alternative to RT(-) controls to evaluate the impact of the gDNA background on RT-PCR data. We propose a novel method (ValidPrime) that is more accurate than traditional RT(-) controls to test qPCR assays with respect to their sensitivity toward gDNA. ValidPrime measures the gDNA contribution using an optimized gDNA-specific ValidPrime assay (VPA) and gDNA reference sample(s). The VPA, targeting a non-transcribed locus, is used to measure the gDNA contents in RT(+) samples and the gDNA reference is used to normalize for GOI-specific differences in gDNA sensitivity. We demonstrate that the RNA-derived component of the signal can be accurately estimated and deduced from the total signal. ValidPrime corrects with high precision for both exogenous (spiked) and endogenous gDNA, contributing ∼60% of the total signal, whereas substantially reducing the number of required qPCR control reactions. In conclusion, ValidPrime offers a cost-efficient alternative to RT(-) controls and accurately corrects for signals derived from gDNA in RT-qPCR.


Assuntos
Contaminação por DNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , DNA/análise , Primers do DNA , Genômica , Camundongos , Camundongos Endogâmicos C57BL
15.
Br J Pharmacol ; 165(1): 57-66, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21671899

RESUMO

The ancestral status of oestrogen receptor (ER) in the family of the steroid receptors has probably contributed to the pleiotropic actions of oestrogens, and in particular, that of 17ß-oestradiol (E2). Indeed, in addition to their well-described role in sexual development and reproduction, they influence most of the physiological processes. The pathophysiological counterpart of these actions includes prevention of osteoporosis, atheroma and type 2 diabetes, and also the promotion of uterus and breast cancer growth. Thus, the major challenge consists in uncoupling some beneficial actions from other deleterious ones, that is, selective ER modulation. Tamoxifen and raloxifene are already used, as they prevent the recurrence of breast cancer and mimic oestrogen action mainly on bone. Both E2 and tamoxifen exhibit a proliferative and, thus, a protumoural action on the endometrium. Activation of ERα and ERß regulates target gene transcription (genomic action) through two independent activation functions, AF-1 and AF-2, but can also elicit rapid membrane-initiated steroid signals. In the present review, we attempted to summarize recent advances provided by the in vivo molecular 'dissection' of ERα, allowing the uncoupling of some of its actions and potentially paving the way to optimized selective ER modulators.


Assuntos
Marcação de Genes , Menopausa/fisiologia , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Antagonistas de Estrogênios/farmacologia , Feminino , Humanos , Menopausa/genética
16.
Arterioscler Thromb Vasc Biol ; 30(8): 1506-12, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20631350

RESUMO

Estrogens, and in particular 17beta-estradiol (E2), play a pivotal role in sexual development and reproduction and are also implicated in a large number of physiological processes, including the cardiovascular system. Both acetylcholine-induced and flow-dependent vasodilation are preserved or potentiated by estrogen treatment in both animal models and humans. Indeed, E2 increases the endothelial production of nitric oxide and prostacyclin and prevents early atheroma through endothelial-mediated mechanisms. Furthermore, whereas it prevents endothelial activation, E2 potentiates the ability of several subpopulations of the circulating or resident immune cells to produce proinflammatory cytokines. The balance between these 2 actions could determine the final effect in a given pathophysiological process. E2 also promotes endothelial healing, as well as angiogenesis. Estrogen actions are essentially mediated by 2 molecular targets: estrogen receptor-alpha (ERalpha) and ERbeta. The analysis of mouse models targeted for ERalpha or ERbeta demonstrated a prominent role of ERalpha in vascular biology. ERalpha directly modulates transcription of target genes through 2 activation functions (AFs), AF-1 and AF-2. Interestingly, an AF-1-deficient ERalpha isoform can be physiologically expressed in the endothelium and appears sufficient to mediate most of the vasculoprotective actions of E2. In contrast, AF-1 is necessary for the E2 actions in reproductive targets. Thus, it appears conceivable to uncouple the vasculoprotective and sexual actions with appropriate selective ER modulators.


Assuntos
Doenças Cardiovasculares/metabolismo , Endotélio Vascular/metabolismo , Estradiol/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/prevenção & controle , Progressão da Doença , Endotélio Vascular/fisiopatologia , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Neovascularização Fisiológica , Receptores de Estrogênio/genética , Fatores Sexuais , Desenvolvimento Sexual , Transdução de Sinais , Cicatrização
17.
Circulation ; 120(25): 2567-76, 2009 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-19996016

RESUMO

BACKGROUND: The prevention of early atheroma by estrogens has been clearly demonstrated in all animal models and appears to be mediated through a direct action on the arterial wall rather than through an effect on the lipoprotein profile. The goal of the present study was to evaluate which cellular target is crucial in this beneficial action of estradiol. METHODS AND RESULTS: We first confirmed the key role of estrogen receptor-alpha (ERalpha) in the atheroprotective effect of estradiol, because this action was completely abolished in mice deficient in both the low-density lipoprotein receptor (LDLr) and ERalpha. Second, using chimeric mice with an ERalpha deficiency in the hematopoietic lineage, we showed the persistence of the protective action of estradiol, which suggests the involvement of extrahematopoietic ERalpha. Third, we showed that loxP-flanked ERalpha mice (ERalpha(flox/flox)) bred with Tie2-Cre(+) mice on an LDLr(-/-) background had complete inactivation of ERalpha in most hematopoietic and all endothelial cells. Remarkably, in this mouse model, the atheroprotective effect of estradiol was completely abolished. Fourth, the atheroprotective effect of estradiol remained abolished in Tie2-Cre(+) ERalpha(flox/flox) LDLr(-/-) mice transplanted with either Tie2-Cre(+) ERalpha(flox/flox) or ERalpha(-/-) bone marrow, whereas it was present in analogous chimeric Tie2-Cre(-) ERalpha(flox/flox) LDLr(-/-) receivers expressing endothelial ERalpha. CONCLUSIONS: We demonstrate directly and for the first time that endothelial ERalpha represents a key target of the atheroprotective effect of estradiol, whereas hematopoietic ERalpha is dispensable. Selective estrogen receptor modulators that mimic the endothelial action of estradiol should now be considered in atheroprotection.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Endotélio Vascular/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptores de LDL/metabolismo , Animais , Transplante de Medula Óssea , Modelos Animais de Doenças , Feminino , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Ovariectomia , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptor TIE-2 , Receptores de LDL/genética
18.
Traffic ; 10(12): 1765-72, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19804566

RESUMO

Intracellular trafficking of fibroblast growth factor 2 (FGF2) exhibits two unusual features: (i) it is secreted despite the lack of signal peptide and (ii) it can translocate to the nucleus after interaction with high- and low-affinity receptors on the cell surface, although it does not possess any classical nuclear localization signal. This nuclear translocation constitutes an important part of the response to the growth factor. Previously, we identified Translokin/CEP57, an FGF2 binding partner, as an intracellular mediator of FGF2 trafficking, which is essential for the nuclear translocation of the growth factor. Here, we report the identification of four Translokin partners: sorting nexin 6, Ran-binding protein M and the kinesins KIF3A and KIF3B. These proteins, through their interaction with Translokin, are involved in two exclusive complexes allowing the bidirectional trafficking of FGF2. Thus, Translokin plays a pivotal role in this original mechanism. In addition, we show that FGF2 secretion is regulated by a negative loop, retro-controlled by FGF receptor and involving FGF2 itself.


Assuntos
Proteínas de Transporte/fisiologia , Núcleo Celular/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células 3T3 , Animais , Sequência de Bases , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , DNA Complementar , Ensaio de Imunoadsorção Enzimática , Camundongos , Transporte Proteico , RNA Interferente Pequeno , Técnicas do Sistema de Duplo-Híbrido
19.
Proc Natl Acad Sci U S A ; 106(6): 2053-8, 2009 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19188600

RESUMO

Full-length 66-kDa estrogen receptor alpha (ERalpha) stimulates target gene transcription through two activation functions (AFs), AF-1 in the N-terminal domain and AF-2 in the ligand binding domain. Another physiologically expressed 46-kDa ERalpha isoform lacks the N-terminal A/B domains and is consequently devoid of AF-1. Previous studies in cultured endothelial cells showed that the N-terminal A/B domain might not be required for estradiol (E2)-elicited NO production. To evaluate the involvement of ERalpha AF-1 in the vasculoprotective actions of E2, we generated a targeted deletion of the ERalpha A/B domain in the mouse. In these ERalphaAF-1(0) mice, both basal endothelial NO production and reendothelialization process were increased by E2 administration to a similar extent than in control mice. Furthermore, exogenous E2 similarly decreased fatty streak deposits at the aortic root from both ovariectomized 18-week-old ERalphaAF-1(+/+) LDLr(-/-) (low-density lipoprotein receptor) and ERalphaAF-1(0) LDLr (-/-) mice fed with a hypercholesterolemic diet. In addition, quantification of lesion size on en face preparations of the aortic tree of 8-month-old ovariectomized or intact female mice revealed that ERalpha AF-1 is dispensable for the atheroprotective action of endogenous estrogens. We conclude that ERalpha AF-1 is not required for three major vasculoprotective actions of E2, whereas it is necessary for the effects of E2 on its reproductive targets. Thus, selective ER modulators stimulating ERalpha with minimal activation of ERalpha AF-1 could retain beneficial vascular actions, while minimizing the sexual effects.


Assuntos
Estradiol/farmacologia , Receptor alfa de Estrogênio/fisiologia , Animais , Aterosclerose/etiologia , Células Endoteliais/metabolismo , Receptor alfa de Estrogênio/química , Feminino , Camundongos , Camundongos Knockout , Óxido Nítrico/biossíntese , Ovariectomia , Substâncias Protetoras , Estrutura Terciária de Proteína
20.
J Immunol ; 180(12): 7980-8, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18523261

RESUMO

Short-term exposure to 17beta-estradiol (E2) in vitro has been reported to decrease the production of proinflammatory cytokines by LPS-activated macrophages through estrogen receptor alpha (ERalpha)-dependent activation of the PI3K pathway. In the present study, we confirm that in vitro exposure of mouse peritoneal macrophages to E2 enhanced Akt phosphorylation and slightly decreased LPS-induced cytokine production. In striking contrast, we show that chronic administration of E2 to ovariectomized mice markedly increases the expression of IL-1beta, IL-6, IL-12p40, and inducible NO synthase by resident peritoneal macrophages in response to LPS ex vivo. These results clearly indicate that short-term E2 treatment in vitro does not predict the long-term effect of estrogens in vivo on peritoneal macrophage functions. We show that this in vivo proinflammatory effect of E2 was mediated through ERalpha. Although the expression of components of the LPS-recognition complex remained unchanged, we provided evidences for alterations of the TLR4 signaling pathway in macrophages from E2-treated mice. Indeed, E2 treatment resulted in the inhibition of PI3K activity and Akt phosphorylation in LPS-activated macrophages, whereas NF-kappaB p65 transcriptional activity was concomitantly increased. Incubation of macrophages with the PI3K inhibitor wortmanin enhanced proinflammatory cytokine gene expression in response to TLR4 activation, and abolishes the difference between cells from placebo- or E2-treated mice, demonstrating the pivotal role of the PI3K/Akt pathway. We conclude that the macrophage activation status is enhanced in vivo by E2 through ERalpha and, at least in part, by the down-modulation of the PI3K/Akt pathway, thereby alleviating this negative regulator of TLR4-signaling.


Assuntos
Citocinas/biossíntese , Estradiol/administração & dosagem , Mediadores da Inflamação/administração & dosagem , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Fosfatidilinositol 3-Quinases/fisiologia , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/metabolismo , Administração Cutânea , Animais , Células Cultivadas , Citocinas/fisiologia , Preparações de Ação Retardada , Implantes de Medicamento , Estradiol/farmacologia , Receptor alfa de Estrogênio/deficiência , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/fisiologia , Feminino , Mediadores da Inflamação/farmacologia , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos Peritoneais/enzimologia , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidores de Fosfoinositídeo-3 Quinase , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Receptor 4 Toll-Like/biossíntese , Receptor 4 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...