Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 47(6): 1435-1438, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35290332

RESUMO

Surface plasmon hybridization provides new perspectives for light manipulation at the nanoscale and related applications in nanophotonics. Multiple hybridization between metallic layers inside plasmonic nanocavities displays properties similar to atomic dressed states. In this Letter, we propose to numerically and analytically investigate the case of a multilayer structure composed of stacked metallic (M) and insulator (I) thin films. For a small number of MIM blocks, the system shows discrete hybridization schemes arising from plasmonic strong coupling. When the number of layers increases, multiple and stronger couplings occur and give birth to new modes which merge to form a plasmonic energy continuum. A schematic diagram of modes construction is presented to help the design of vertical nanocavities with specific properties such as plasmonic guiding.

2.
J Phys Chem Lett ; 12(2): 752-757, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33405931

RESUMO

The 3D orientation of a single gold nanoparticle is probed experimentally by light scattering polarimetry. We choose high-quality gold bipyramids (AuBPs) that support around 700 nm a well-defined narrow longitudinal localized surface plasmonic resonance (LSPR) which can be considered as a linear radiating dipole. A specific spectroscopic dark-field technique was used to control the collection angles of the scattered light. The in-plane as well as the out-of-plane angles are determined by analyzing the polarization of the scattered radiation. The data are compared with a previously developed model where the environment and the angular collection both play crucial roles. We show that most of the single AuBPs present an out-of-plane orientation consistent with their geometry. Finally, the fundamental role of the collection angles on the determination of the orientation is investigated for the first time. Several features are then deduced: we validate the choice of the analytical 1D model, an accurate 3D orientation is obtained, and the critical contribution of the evanescent waves is highlighted.

3.
Opt Lett ; 45(18): 5193-5196, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32932486

RESUMO

Embedding a thin layer of a noble metal between two symmetric media results in the hybridization of the surface plasmons, leading to the existence of a long-range surface plasmon (LRSP). In this Letter, we investigate numerically the coupling of a single dipole, as a probe, to this LRSP. Different de-excitation channels are available such as free space radiation and plasmonic modes in different proportions. In a more realistic approach, with finite layers, guided modes in the dielectric may also be excited. The study of the local density of optical states allows us to separate, identify, and reconstruct the different modes. The critical role of the orientation as well as the position of the dipole leads to an interplay between the LRSP and the guided modes. The coupling efficiency with these modes is evaluated. Besides providing a deep understanding of a LRSP in realistic devices, these results could be used as guidelines for future optoelectronic device designs.

4.
Nanotechnology ; 30(1): 015706, 2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30370901

RESUMO

Our study proposes a new way to observe and explain the presence of extended plasmonic modes in disordered semi-continuous metal films before the percolation threshold. Attenuated total reflection spectroscopy allows us to follow the transition of plasmon modes from localized to delocalized resonances, but also reveals unobserved collective plasmon modes. These bright modes with out-of-plane polarization are transverse collective plasmonic resonances. By increasing the density of metallic nanoparticles in a wavelength scale, we observe an angular squeezing and spectral broadening of these modes. This behavior can be explained considering that transverse localized surface plasmon resonances of each nanoparticle, all resonant, interact in a collective and coherent way via a common confined light mode: the evanescent wave. These many-body resonances, which have never been clearly identified in such disordered semi-continuous metal films, can be described by analogy with atomic physics as superradiant modes. Our first simulations, using dyadic Green's formalism, demonstrate the existence of this mode for a dense array of plasmonic systems. In this regime, the radiation rate of the superradiant mode increases with the number of tied dipoles. This explains the spectral broadening observed in our work and constitutes the first manifestation of superradiance mode in plasmonic random structure.

5.
J Opt Soc Am A Opt Image Sci Vis ; 31(5): 1067-73, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24979639

RESUMO

We report the experimental combination of leakage radiation microscopy with a Young slit experiment to address the spatial coherence properties of surface waves. We applied this method to measurements of surface plasmon polaritons (SPPs). The relationship between the spatial decay and interference contrast allows us to extract the degree of coherence. In a second step, we investigate the coherence properties of the plasmon in the weak coupling regime between fluorophores and metallic surfaces. Finally, a method is proposed to extract the propagation length of SPPs in a large variety of systems.

6.
Opt Express ; 20(11): 11968-75, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22714182

RESUMO

A parallelized 3D FDTD (Finite-Difference Time-Domain) solver has been used to study the near-field electromagnetic intensity upon plasmonics nanostructures. The studied structures are obtained from AFM (Atomic Force Microscopy) topography measured on real disordered gold layers deposited by thermal evaporation under ultra-high vacuum. The simulation results obtained with these 3D metallic nanostructures are in good agreement with previous experimental results: the localization of the electromagnetic intensity in subwavelength areas ("hot spots") is demonstrated; the spectral and polarization dependences of the position of these "hot spots" are also satisfactory; the enhancement factors obtained are realistic compared to the experimental ones. These results could be useful to further our understanding of the electromagnetic behavior of random metal layers.


Assuntos
Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Ressonância de Plasmônio de Superfície/métodos , Simulação por Computador , Campos Eletromagnéticos , Fractais , Luz , Espalhamento de Radiação
7.
Opt Express ; 19(24): 24424-33, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22109469

RESUMO

We describe the plasmonic properties of a two-dimensional periodic metallic grating of macroscopic size obtained by gold deposition on a self-assembled silica opal. Structural characterization shows a transition from microscopic order to isotropy at macroscopic scale. Optical reflection spectra exhibit a dip of almost complete absorption due to coupling to surface-plasmon-polaritons (SPP). This is explained by theoretical calculations introducing a density of coupled SPP modes. We demonstrate, at a given incidence angle, a broad continuum of coupled wavelengths over the visible spectrum. This opens new possibilities in fields where light-plasmon coupling is required over a broad range of wavelengths and incidence orientations.


Assuntos
Cristalização/métodos , Ouro/química , Ressonância de Plasmônio de Superfície/métodos , Absorção , Anisotropia , Luz , Espalhamento de Radiação
8.
Materials (Basel) ; 4(7): 1182-1193, 2011 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28824136

RESUMO

Many studies have considered the luminescence of colloidal II-VI nanocrystals, both in solution at a collective scale and at an individual scale by confocal microscopy. The quantum yield is an important figure of merit for the optical quality of a fluorophore. We detail here a simple method to determine the quantum yield of nanocrystals in solution as a function of the absorption. For this purpose, we choose rhodamine 101 as a reference dye to measure the nanocrystal fluorescence quantum yield. The influence of the concentration on quantum yield is therefore studied for both the reference and the solutions of nanocrystals and is found to be critical for the acuity of the method. Different types of nanocrystals are studied to illustrate different quantum yield evolutions with the concentration.

9.
Nano Lett ; 10(8): 2817-24, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20593772

RESUMO

Here we report on the visible luminescence properties of individual spherical gold particles in solution, obtained by two-photon excited fluorescence correlation spectroscopy and by an original dual Rayleigh-fluorescence method, correlating the Rayleigh scattering and the luminescence fluctuations of the same particle. The results demonstrate that the power needed to observe the two-photon excited visible luminescence depends on the illuminated particle and that the corresponding emission is anisotropic at low power. These observations combined with the evolution of the dynamics of the luminescence with respect to excitation power are interpreted by the presence of unique emissive surface states that are randomly switched off and on by the heat-induced movement of the molecular coating. These characteristics, which remain hidden in macroscopic experiments, have important implications with respect to the potential use of the particles as labels in two-photon imaging in aqueous samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...