Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
JIMD Rep ; 65(4): 280-294, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38974607

RESUMO

Classic galactosemia (CG) arises from loss-of-function mutations in the Galt gene, which codes for the enzyme galactose-1-phosphate uridylyltransferase (GALT), a central component in galactose metabolism. The neonatal fatality associated with CG can be prevented by galactose dietary restriction, but for decades it has been known that limiting galactose intake is not a cure and patients often have lasting complications. Even on a low-galactose diet, GALT's substrate galactose-1-phosphate (Gal1P) is elevated and one hypothesis is that elevated Gal1P is a driver of pathology. Here we show that Gal1P levels were elevated above wildtype (WT) in Galt mutant mice, while mice doubly mutant for Galt and the gene encoding galactokinase 1 (Galk1) had normal Gal1P levels. This indicates that GALK1 is necessary for the elevated Gal1P in CG. Another hypothesis to explain the pathology is that an inability to metabolize galactose leads to diminished or disrupted galactosylation of proteins or lipids. Our studies reveal that levels of a subset of cerebrosides-galactosylceramide 24:1, sulfatide 24:1, and glucosylceramide 24:1-were modestly decreased compared to WT. In contrast, gangliosides were unaltered. The observed reduction in these 24:1 cerebrosides may be relevant to the clinical pathology of CG, since the cerebroside galactosylceramide is an important structural component of myelin, the 24:1 species is the most abundant in myelin, and irregularities in white matter, of which myelin is a constituent, have been observed in patients with CG. Therefore, impaired cerebroside production may be a contributing factor to the brain damage that is a common clinical feature of the human disease.

2.
J Biol Chem ; 298(12): 102625, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36306823

RESUMO

Mucopolysaccharidosis type IIIA (MPS IIIA) is a lysosomal storage disorder caused by N-sulfoglucosamine sulfohydrolase (SGSH) deficiency. SGSH removes the sulfate from N-sulfoglucosamine residues on the nonreducing end of heparan sulfate (HS-NRE) within lysosomes. Enzyme deficiency results in accumulation of partially degraded HS within lysosomes throughout the body, leading to a progressive severe neurological disease. Enzyme replacement therapy has been proposed, but further evaluation of the treatment strategy is needed. Here, we used Chinese hamster ovary cells to produce a highly soluble and fully active recombinant human sulfamidase (rhSGSH). We discovered that rhSGSH utilizes both the CI-MPR and LRP1 receptors for uptake into patient fibroblasts. A single intracerebroventricular (ICV) injection of rhSGSH in MPS IIIA mice resulted in a tissue half-life of 9 days and widespread distribution throughout the brain. Following a single ICV dose, both total HS and the MPS IIIA disease-specific HS-NRE were dramatically reduced, reaching a nadir 2 weeks post dose. The durability of effect for reduction of both substrate and protein markers of lysosomal dysfunction and a neuroimmune response lasted through the 56 days tested. Furthermore, seven weekly 148 µg doses ICV reduced those markers to near normal and produced a 99.5% reduction in HS-NRE levels. A pilot study utilizing every other week dosing in two animals supports further evaluation of less frequent dosing. Finally, our dose-response study also suggests lower doses may be efficacious. Our findings show that rhSGSH can normalize lysosomal HS storage and markers of a neuroimmune response when delivered ICV.


Assuntos
Encefalopatias , Mucopolissacaridose III , Cricetinae , Animais , Humanos , Camundongos , Mucopolissacaridose III/tratamento farmacológico , Mucopolissacaridose III/metabolismo , Células CHO , Projetos Piloto , Cricetulus , Hidrolases/metabolismo , Encéfalo/metabolismo , Heparitina Sulfato/metabolismo , Encefalopatias/metabolismo , Lisossomos/metabolismo , Modelos Animais de Doenças
3.
J Pharmacol Exp Ther ; 382(3): 277-286, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35717448

RESUMO

Mucopolysaccharidosis type IIIB (MPS IIIB; Sanfilippo syndrome B; OMIM #252920) is a lethal, pediatric, neuropathic, autosomal recessive, and lysosomal storage disease with no approved therapy. Patients are deficient in the activity of N-acetyl-alpha-glucosaminidase (NAGLU; EC 3.2.150), necessary for normal lysosomal degradation of the glycosaminoglycan heparan sulfate (HS). Tralesinidase alfa (TA), a fusion protein comprised of recombinant human NAGLU and a modified human insulin-like growth factor 2, is in development as an enzyme replacement therapy that is administered via intracerebroventricular (ICV) infusion, thus circumventing the blood brain barrier. Previous studies have confirmed ICV infusion results in widespread distribution of TA throughout the brains of mice and nonhuman primates. We assessed the long-term tolerability, pharmacology, and clinical efficacy of TA in a canine model of MPS IIIB over a 20-month study. Long-term administration of TA was well tolerated as compared with administration of vehicle. TA was widely distributed across brain regions, which was confirmed in a follow-up 8-week pharmacokinetic/pharmacodynamic study. MPS IIIB dogs treated for up to 20 months had near-normal levels of HS and nonreducing ends of HS in cerebrospinal fluid and central nervous system (CNS) tissues. TA-treated MPS IIIB dogs performed better on cognitive tests and had improved CNS pathology and decreased cerebellar volume loss relative to vehicle-treated MPS IIIB dogs. These findings demonstrate the ability of TA to prevent or limit the biochemical, pathologic, and cognitive manifestations of canine MPS IIIB disease, thus providing support of its potential long-term tolerability and efficacy in MPS IIIB subjects. SIGNIFICANCE STATEMENT: This work illustrates the efficacy and tolerability of tralesinidase alfa as a potential therapeutic for patients with mucopolysaccharidosis type IIIB (MPS IIIB) by documenting that administration to the central nervous system of MPS IIIB dogs prevents the accumulation of disease-associated glycosaminoglycans in lysosomes, hepatomegaly, cerebellar atrophy, and cognitive decline.


Assuntos
Mucopolissacaridose III , Animais , Encéfalo/metabolismo , Criança , Modelos Animais de Doenças , Cães , Terapia de Reposição de Enzimas , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/líquido cefalorraquidiano , Heparitina Sulfato/uso terapêutico , Humanos , Mucopolissacaridose III/tratamento farmacológico , Mucopolissacaridose III/patologia
4.
Mol Genet Metab ; 133(2): 185-192, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33839004

RESUMO

Mucopolysaccharidosis IIIB (MPS IIIB, Sanfilippo syndrome type B) is caused by a deficiency in α-N-acetylglucosaminidase (NAGLU) activity, which leads to the accumulation of heparan sulfate (HS). MPS IIIB causes progressive neurological decline, with affected patients having an expected lifespan of approximately 20 years. No effective treatment is available. Recent pre-clinical studies have shown that intracerebroventricular (ICV) ERT with a fusion protein of rhNAGLU-IGF2 is a feasible treatment for MPS IIIB in both canine and mouse models. In this study, we evaluated the biochemical efficacy of a single dose of rhNAGLU-IGF2 via ICV-ERT in brain and liver tissue from Naglu-/- neonatal mice. Twelve weeks after treatment, NAGLU activity levels in brain were 0.75-fold those of controls. HS and ß-hexosaminidase activity, which are elevated in MPS IIIB, decreased to normal levels. This effect persisted for at least 4 weeks after treatment. Elevated NAGLU and reduced ß-hexosaminidase activity levels were detected in liver; these effects persisted for up to 4 weeks after treatment. The overall therapeutic effects of single dose ICV-ERT with rhNAGLU-IGF2 in Naglu-/- neonatal mice were long-lasting. These results suggest a potential benefit of early treatment, followed by less-frequent ICV-ERT dosing, in patients diagnosed with MPS IIIB.


Assuntos
Acetilglucosaminidase/genética , Terapia de Reposição de Enzimas , Fator de Crescimento Insulin-Like II/genética , Mucopolissacaridose III/terapia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Cães , Heparitina Sulfato/metabolismo , Humanos , Infusões Intraventriculares , Camundongos , Camundongos Knockout , Mucopolissacaridose III/enzimologia , Mucopolissacaridose III/genética , Mucopolissacaridose III/patologia , Doenças do Sistema Nervoso , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia
5.
PLoS One ; 15(12): e0243006, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33259552

RESUMO

ß-hexosaminidase is an enzyme responsible for the degradation of gangliosides, glycans, and other glycoconjugates containing ß-linked hexosamines that enter the lysosome. GM2 gangliosidoses, such as Tay-Sachs and Sandhoff, are lysosomal storage disorders characterized by ß-hexosaminidase deficiency and subsequent lysosomal accumulation of its substrate metabolites. These two diseases result in neurodegeneration and early mortality in children. A significant difference between these two disorders is the accumulation in Sandhoff disease of soluble oligosaccharide metabolites that derive from N- and O-linked glycans. In this paper we describe our results from a longitudinal biochemical study of a feline model of Sandhoff disease and an ovine model of Tay-Sachs disease to investigate the accumulation of GM2/GA2 gangliosides, a secondary biomarker for phospholipidosis, bis-(monoacylglycero)-phosphate, and soluble glycan metabolites in both tissue and fluid samples from both animal models. While both Sandhoff cats and Tay-Sachs sheep accumulated significant amounts of GM2 and GA2 gangliosides compared to age-matched unaffected controls, the Sandhoff cats having the more severe disease, accumulated larger amounts of gangliosides compared to Tay-Sachs sheep in their occipital lobes. For monitoring glycan metabolites, we developed a quantitative LC/MS assay for one of these free glycans in order to perform longitudinal analysis. The Sandhoff cats showed significant disease-related increases in this glycan in brain and in other matrices including urine which may provide a useful clinical tool for measuring disease severity and therapeutic efficacy. Finally, we observed age-dependent increasing accumulation for a number of analytes, especially in Sandhoff cats where glycosphingolipid, phospholipid, and glycan levels showed incremental increases at later time points without signs of peaking. This large animal natural history study for Sandhoff and Tay-Sachs is the first of its kind, providing insight into disease progression at the biochemical level. This report may help in the development and testing of new therapies to treat these disorders.


Assuntos
Gangliosidoses GM2/metabolismo , Polissacarídeos/metabolismo , Animais , Gatos , Modelos Animais de Doenças , Fosfolipídeos/metabolismo
6.
Sci Rep ; 10(1): 20365, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230178

RESUMO

Mucopolysaccharidosis type IIIB (MPS IIIB; Sanfilippo syndrome B) is an autosomal recessive lysosomal storage disorder caused by the deficiency of alpha-N-acetylglucosaminidase activity, leading to increased levels of nondegraded heparan sulfate (HS). A mouse model has been useful to evaluate novel treatments for MPS IIIB, but has limitations. In this study, we evaluated the naturally occurring canine model of MPS IIIB for the onset and progression of biochemical and neuropathological changes during the preclinical stages (onset approximately 24-30 months of age) of canine MPS IIIB disease. Even by 1 month of age, MPS IIIB dogs had elevated HS levels in brain and cerebrospinal fluid. Analysis of histopathology of several disease-relevant regions of the forebrain demonstrated progressive lysosomal storage and microglial activation despite a lack of cerebrocortical atrophy in the oldest animals studied. More pronounced histopathology changes were detected in the cerebellum, where progressive lysosomal storage, astrocytosis and microglial activation were observed. Microglial activation was particularly prominent in cerebellar white matter and within the deep cerebellar nuclei, where neuron loss also occurred. The findings in this study will form the basis of future assessments of therapeutic efficacy in this large animal disease model.


Assuntos
Acetilglucosaminidase/deficiência , Cerebelo/patologia , Córtex Cerebral/patologia , Doenças do Cão/patologia , Mucopolissacaridose III/patologia , Prosencéfalo/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Cerebelo/metabolismo , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Doenças do Cão/metabolismo , Cães , Feminino , Heparitina Sulfato/metabolismo , Histocitoquímica , Humanos , Lisossomos/metabolismo , Lisossomos/patologia , Masculino , Microglia/metabolismo , Microglia/patologia , Mucopolissacaridose III/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Prosencéfalo/metabolismo , Substância Branca/metabolismo , Substância Branca/patologia
7.
Drug Deliv Transl Res ; 10(2): 425-439, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31942701

RESUMO

BMN 250 is being developed as enzyme replacement therapy for Sanfilippo type B, a primarily neurological rare disease, in which patients have deficient lysosomal alpha-N-acetylglucosaminidase (NAGLU) enzyme activity. BMN 250 is taken up in target cells by the cation-independent mannose 6-phosphate receptor (CI-MPR, insulin-like growth factor 2 receptor), which then facilitates transit to the lysosome. BMN 250 is dosed directly into the central nervous system via the intracerebroventricular (ICV) route, and the objective of this work was to compare systemic intravenous (IV) and ICV delivery of BMN 250 to confirm the value of ICV dosing. We first assess the ability of enzyme to cross a potentially compromised blood-brain barrier in the Naglu-/- mouse model and then assess the potential for CI-MPR to be employed for receptor-mediated transport across the blood-brain barrier. In wild-type and Naglu-/- mice, CI-MPR expression in brain vasculature is high during the neonatal period but virtually absent by adolescence. In contrast, CI-MPR remains expressed through adolescence in non-affected non-human primate and human brain vasculature. Combined results from IV administration of BMN 250 in Naglu-/- mice and IV and ICV administration in healthy juvenile non-human primates suggest a limitation to therapeutic benefit from IV administration because enzyme distribution is restricted to brain vascular endothelial cells: enzyme does not reach target neuronal cells following IV administration, and pharmacological response following IV administration is likely restricted to clearance of substrate in endothelial cells. In contrast, ICV administration enables central nervous system enzyme replacement with biodistribution to target cells.


Assuntos
Acetilglucosaminidase/administração & dosagem , Acetilglucosaminidase/genética , Barreira Hematoencefálica/química , Fator de Crescimento Insulin-Like II/administração & dosagem , Mucopolissacaridose III/tratamento farmacológico , Receptor IGF Tipo 2/metabolismo , Proteínas Recombinantes de Fusão/administração & dosagem , Acetilglucosaminidase/uso terapêutico , Administração Intravenosa , Animais , Modelos Animais de Doenças , Terapia de Reposição de Enzimas , Feminino , Infusões Intraventriculares , Fator de Crescimento Insulin-Like II/uso terapêutico , Masculino , Camundongos , Camundongos Transgênicos , Mucopolissacaridose III/genética , Primatas , Proteínas Recombinantes de Fusão/uso terapêutico , Pesquisa Translacional Biomédica
8.
Glycobiology ; 30(7): 433-445, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-31897472

RESUMO

Morquio syndrome type A, also known as MPS IVA, is a rare autosomal recessive disorder caused by deficiency of N-acetylgalactosamine-6-sulfatase, a lysosomal hydrolase critical in the degradation of keratan sulfate (KS) and chondroitin sulfate (CS). The CS that accumulates in MPS IVA patients has a disease-specific nonreducing end (NRE) terminating with N-acetyl-D-galactosamine 6-sulfate, which can be specifically quantified after enzymatic depolymerization of CS polysaccharide chains. The abundance of N-acetyl-D-galactosamine 6-sulfate over other possible NRE structures is diagnostic for MPS IVA. Here, we describe an assay for the liberation and measurement of N-acetyl-D-galactosamine 6-sulfate and explore its application to MPS IVA patient samples in pilot studies examining disease detection, effects of age and treatment with enzyme-replacement therapy. This assay complements the existing urinary KS assay by quantifying CS-derived substrates, which represent a distinct biochemical aspect of MPS IVA. A more complete understanding of the disease could help to more definitively detect disease across age ranges and more completely measure the pharmacodynamic efficacy of therapies. Larger studies will be needed to clarify the potential value of this CS-derived substrate to manage disease in MPS IVA patients.


Assuntos
Sulfatos de Condroitina/metabolismo , Mucopolissacaridose IV/metabolismo , Adulto , Células Cultivadas , Criança , Sulfatos de Condroitina/química , Sulfatos de Condroitina/urina , Condroitina Sulfatases/metabolismo , Terapia de Reposição de Enzimas , Humanos , Mucopolissacaridose IV/terapia , Mucopolissacaridose IV/urina
9.
J Biol Chem ; 295(39): 13532-13555, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31481471

RESUMO

Autosomal recessive mutations in the galactosidase ß1 (GLB1) gene cause lysosomal ß-gal deficiency, resulting in accumulation of galactose-containing substrates and onset of the progressive and fatal neurodegenerative lysosomal storage disease, GM1 gangliosidosis. Here, an enzyme replacement therapy (ERT) approach in fibroblasts from GM1 gangliosidosis patients with recombinant human ß-gal (rhß-gal) produced in Chinese hamster ovary cells enabled direct and precise rhß-gal delivery to acidified lysosomes. A single, low dose (3 nm) of rhß-gal was sufficient for normalizing ß-gal activity and mediating substrate clearance for several weeks. We found that rhß-gal uptake by the fibroblasts is dose-dependent and saturable and can be competitively inhibited by mannose 6-phosphate, suggesting cation-independent, mannose 6-phosphate receptor-mediated endocytosis from the cell surface. A single intracerebroventricularly (ICV) administered dose of rhß-gal (100 µg) resulted in broad bilateral biodistribution of rhß-gal to critical regions of pathology in a mouse model of GM1 gangliosidosis. Weekly ICV dosing of rhß-gal for 8 weeks substantially reduced brain levels of ganglioside and oligosaccharide substrates and reversed well-established secondary neuropathology. Of note, unlike with the ERT approach, chronic lentivirus-mediated GLB1 overexpression in the GM1 gangliosidosis patient fibroblasts caused accumulation of a prelysosomal pool of ß-gal, resulting in activation of the unfolded protein response and endoplasmic reticulum stress. This outcome was unsurprising in light of our in vitro biophysical findings for rhß-gal, which include pH-dependent and concentration-dependent stability and dynamic self-association. Collectively, our results highlight that ICV-ERT is an effective therapeutic intervention for managing GM1 gangliosidosis potentially more safely than with gene therapy approaches.


Assuntos
Terapia de Reposição de Enzimas , Gangliosidose GM1/terapia , beta-Galactosidase/metabolismo , Animais , Gangliosidose GM1/metabolismo , Gangliosidose GM1/patologia , Camundongos
10.
Mol Genet Metab Rep ; 21: 100524, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31720227

RESUMO

INTRODUCTION: GM1 gangliosidosis is a rare autosomal recessive genetic disorder caused by the disruption of the GLB1 gene that encodes ß-galactosidase, a lysosomal hydrolase that removes ß-linked galactose from the non-reducing end of glycans. Deficiency of this catabolic enzyme leads to the lysosomal accumulation of GM1 and its asialo derivative GA1 in ß-galactosidase deficient patients and animal models. In addition to GM1 and GA1, there are other glycoconjugates that contain ß-linked galactose whose metabolites are substrates for ß-galactosidase. For example, a number of N-linked glycan structures that have galactose at their non-reducing end have been shown to accumulate in GM1 gangliosidosis patient tissues and biological fluids. OBJECTIVE: In this study, we attempt to fully characterize the broad array of GLB1 substrates that require GLB1 for their lysosomal turnover. RESULTS: Using tandem mass spectrometry and glycan reductive isotope labeling with data-dependent mass spectrometry, we have confirmed the accumulation of glycolipids (GM1 and GA1) and N-linked glycans with terminal beta-linked galactose. We have also discovered a novel set of core 1 and 2 O-linked glycan metabolites, many of which are part of structurally-related isobaric series that accumulate in disease. In the brain of GLB1 null mice, the levels of these glycan metabolites increased along with those of both GM1 and GA1 as a function of age. In addition to brain tissue, we found elevated levels of both N-linked and O-linked glycan metabolites in a number of peripheral tissues and in urine. Both brain and urine samples from human GM1 gangliosidosis patients exhibited large increases in steady state levels for the same glycan metabolites, demonstrating their correlation with this disease in humans as well. CONCLUSIONS: Our studies illustrate that GLB1 deficiency is not purely a ganglioside accumulation disorder, but instead a broad oligosaccharidosis that include representatives of many ß-linked galactose containing glycans and glycoconjugates including glycolipids, N-linked glycans, and various O-linked glycans. Accounting for all ß-galactosidase substrates that accumulate when this enzyme is deficient increases our understanding of this severe disorder by identifying metabolites that may drive certain aspects of the disease and may also serve as informative disease biomarkers to fully evaluate the efficacy of future therapies.

11.
Mol Ther Methods Clin Dev ; 14: 56-63, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31309128

RESUMO

Sanfilippo syndrome type B, or mucopolysaccharidosis IIIB (MPS IIIB), is a rare autosomal recessive lysosomal storage disease caused by a deficiency of α-N-acetylglucosaminidase (NAGLU). Deficiency in NAGLU disrupts the lysosomal turnover of heparan sulfate (HS), which results in the abnormal accumulation of partially degraded HS in cells and tissues. BMN 250 (NAGLU-insulin-like growth factor 2 [IGF2]) is a recombinant fusion protein developed as an investigational enzyme replacement therapy for MPS IIIB. The IGF2 peptide on BMN 250 promotes enhanced targeting of the enzyme to lysosomes through its interaction with the mannose 6-phosphate receptor. The focus of these studies was to further characterize the ability of NAGLU-IGF2 to clear accumulated HS compared to unmodified NAGLU in primary cellular models of MPS IIIB. Here, we establish distinct primary cell models of MPS IIIB with HS accumulation. These cellular models revealed distinct NAGLU uptake characteristics that depend on the duration of exposure. We found that with sustained exposure, NAGLU uptake and HS clearance occurred independent of known lysosomal targeting signals. In contrast, under conditions of limited exposure duration, NAGLU-IGF2 was taken up more rapidly than the unmodified NAGLU into MPS IIIB primary fibroblasts, astrocytes, and cortical neurons, where it efficiently degraded accumulated HS. These studies illustrate the importance of using physiologically relevant conditions in the evaluation of enzyme replacement therapies in cellular models.

12.
PLoS One ; 14(1): e0207836, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30657762

RESUMO

Sanfilippo syndrome type B (Sanfilippo B; Mucopolysaccharidosis type IIIB) occurs due to genetic deficiency of lysosomal alpha-N-acetylglucosaminidase (NAGLU) and subsequent lysosomal accumulation of heparan sulfate (HS), which coincides with devastating neurodegenerative disease. Because NAGLU expressed in Chinese hamster ovary cells is not mannose-6-phosphorylated, we developed an insulin-like growth factor 2 (IGF2)-tagged NAGLU molecule (BMN 250; tralesinidase alfa) that binds avidly to the IGF2 / cation-independent mannose 6-phosphate receptor (CI-MPR) for glycosylation independent lysosomal targeting. BMN 250 is currently being developed as an investigational enzyme replacement therapy for Sanfilippo B. Here we distinguish two cellular uptake mechanisms by which BMN 250 is targeted to lysosomes. In normal rodent-derived neurons and astrocytes, the majority of BMN250 uptake over 24 hours reaches saturation, which can be competitively inhibited with IGF2, suggestive of CI-MPR-mediated uptake. Kuptake, defined as the concentration of enzyme at half-maximal uptake, is 5 nM and 3 nM in neurons and astrocytes, with a maximal uptake capacity (Vmax) corresponding to 764 nmol/hr/mg and 5380 nmol/hr/mg, respectively. Similar to neurons and astrocytes, BMN 250 uptake in Sanfilippo B patient fibroblasts is predominantly CI-MPR-mediated, resulting in augmentation of NAGLU activity with doses of enzyme that fall well below the Kuptake (5 nM), which are sufficient to prevent HS accumulation. In contrast, uptake of the untagged recombinant human NAGLU (rhNAGLU) enzyme in neurons, astrocytes and fibroblasts is negligible at the same doses tested. In microglia, receptor-independent uptake, defined as enzyme uptake resistant to competition with excess IGF2, results in appreciable lysosomal delivery of BMN 250 and rhNAGLU (Vmax = 12,336 nmol/hr/mg and 5469 nmol/hr/mg, respectively). These results suggest that while receptor-independent mechanisms exist for lysosomal targeting of rhNAGLU in microglia, BMN 250, by its IGF2 tag moiety, confers increased CI-MPR-mediated lysosomal targeting to neurons and astrocytes, two additional critical cell types of Sanfilippo B disease pathogenesis.


Assuntos
Acetilglucosaminidase/metabolismo , Endocitose , Fator de Crescimento Insulin-Like II/uso terapêutico , Mucopolissacaridose III/tratamento farmacológico , Mucopolissacaridose III/patologia , Proteínas Recombinantes de Fusão/uso terapêutico , Acetilglucosaminidase/farmacocinética , Acetilglucosaminidase/uso terapêutico , Animais , Astrócitos/metabolismo , Axônios/metabolismo , Cátions , Fibroblastos/metabolismo , Heparitina Sulfato/metabolismo , Hipocampo/patologia , Humanos , Fator de Crescimento Insulin-Like II/farmacocinética , Lisossomos/enzimologia , Microglia/metabolismo , Ratos , Receptor IGF Tipo 2/metabolismo , Proteínas Recombinantes de Fusão/farmacocinética
13.
Proc Natl Acad Sci U S A ; 114(39): E8155-E8164, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28893995

RESUMO

Biosynthesis of the common mammalian sialic acid N-glycolylneuraminic acid (Neu5Gc) was lost during human evolution due to inactivation of the CMAH gene, possibly expediting divergence of the Homo lineage, due to a partial fertility barrier. Neu5Gc catabolism generates N-glycolylhexosamines, which are potential precursors for glycoconjugate biosynthesis. We carried out metabolic labeling experiments and studies of mice with human-like Neu5Gc deficiency to show that Neu5Gc degradation is the metabolic source of UDP-GlcNGc and UDP-GalNGc and the latter allows an unexpectedly selective incorporation of N-glycolyl groups into chondroitin sulfate (CS) over other potential glycoconjugate products. Partially N-glycolylated-CS was chemically synthesized as a standard for mass spectrometry to confirm its natural occurrence. Much lower amounts of GalNGc in human CS can apparently be derived from Neu5Gc-containing foods, a finding confirmed by feeding Neu5Gc-rich chow to human-like Neu5Gc-deficient mice. Unlike the case with Neu5Gc, N-glycolyl-CS was also stable enough to be detectable in animal fossils as old as 4 My. This work opens the door for investigating the biological and immunological significance of this glycosaminoglycan modification and for an "ancient glycans" approach to dating of Neu5Gc loss during the evolution of Homo.


Assuntos
Sulfatos de Condroitina/química , Comportamento Alimentar , Glicoconjugados/química , Ácidos Neuramínicos/química , Animais , Células CHO , Linhagem Celular , Sulfatos de Condroitina/isolamento & purificação , Cricetulus , Fósseis , Humanos , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pan troglodytes , Carne Vermelha/análise
14.
Sci Rep ; 7(1): 9008, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827536

RESUMO

Amyloid aggregates found in the brain of patients with neurodegenerative diseases, including Alzheimer's and Parkinson's disease, are thought to spread to increasingly larger areas of the brain through a prion-like seeding mechanism. Not much is known about which cell surface receptors may be involved in the cell-to-cell transfer, but proteoglycans are of interest due to their well-known propensity to interact with amyloid aggregates. In this study, we investigated the involvement of plasma membrane-bound heparan and chondroitin sulfate proteoglycans in cellular uptake of aggregates consisting of α-synuclein, a protein forming amyloid aggregates in Parkinson's disease. We show, using a pH-sensitive probe, that internalization of α-synuclein amyloid fibrils in neuroblastoma cells is dependent on heparan sulfate, whereas internalization of smaller non-amyloid oligomers is not. We also show that α-synuclein fibril uptake in an oligodendrocyte-like cell line is equally dependent on heparan sulfate, while astrocyte- and microglia-like cell lines have other means to internalize the fibrils. In addition, we analyzed the interaction between the α-synuclein amyloid fibrils and heparan sulfate and show that overall sulfation of the heparan sulfate chains is more important than sulfation at particular sites along the chains.


Assuntos
Endocitose , Heparitina Sulfato/metabolismo , Agregados Proteicos , alfa-Sinucleína/metabolismo , Animais , Astrócitos/metabolismo , Linhagem Celular , Humanos , Microglia/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Ratos
15.
Mol Ther Methods Clin Dev ; 6: 43-53, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28664165

RESUMO

Sanfilippo syndrome type B (mucopolysaccharidosis IIIB), caused by inherited deficiency of α-N-acetylglucosaminidase (NAGLU), required for lysosomal degradation of heparan sulfate (HS), is a pediatric neurodegenerative disorder with no approved treatment. Intracerebroventricular (ICV) delivery of a modified recombinant NAGLU, consisting of human NAGLU fused with insulin-like growth factor 2 (IGF2) for enhanced lysosomal targeting, was previously shown to result in marked enzyme uptake and clearance of HS storage in the Naglu-/- mouse brain. To further evaluate regional, cell type-specific, and dose-dependent biodistribution of NAGLU-IGF2 (BMN 250) and its effects on biochemical and histological pathology, Naglu-/- mice were treated with 1-100 µg ICV doses (four times over 2 weeks). 1 day after the last dose, BMN 250 (100 µg doses) resulted in above-normal NAGLU activity levels, broad biodistribution, and uptake in all cell types, with NAGLU predominantly localized to neurons in the Naglu-/- mouse brain. This led to complete clearance of disease-specific HS and reduction of secondary lysosomal defects and neuropathology across various brain regions lasting for at least 28 days after the last dose. The substantial brain uptake of NAGLU attainable by this highest ICV dosage was required for nearly complete attenuation of disease-driven storage accumulations and neuropathology throughout the Naglu-/- mouse brain.

16.
ACS Chem Biol ; 12(2): 367-373, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28055182

RESUMO

The degradation of glycosaminoglycans (GAGs) involves a series of exolytic glycosidases and sulfatases that act sequentially on the nonreducing end of the polysaccharide chain. Enzymes have been cloned that catalyze all of the known linkages with the exception of the removal of the 2-O-sulfate group from 2-sulfoglucuronate, which is found in heparan sulfate and dermatan sulfate. Here, we show using synthetic disaccharide substrates that arylsulfatase K is the glucuronate-2-sulfatase. Arylsulfatase K acts selectively on 2-sulfoglucuronate and lacks activity against 2-sulfoiduronate, whereas iduronate-2-sulfatase (IDS) desulfates synthetic disaccharides containing 2-sulfoiduronate but not 2-sulfoglucuronate. As arylsulfatase K has all of the properties expected of a lysosomal enzyme, we conclude that arylsulfatase K is the long sought lysosomal glucuronate-2-sulfatase, which we designate GDS.


Assuntos
Arilsulfatases/metabolismo , Lisossomos/enzimologia , Cromatografia Líquida , Glicosaminoglicanos/metabolismo , Humanos , Espectrometria de Massas , Especificidade por Substrato
17.
ACS Chem Biol ; 11(4): 971-80, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26731579

RESUMO

Binding of proteins to heparan sulfate is driven predominantly by electrostatic interactions between positively charged amino acid residues in the protein and negatively charged sulfate groups located at various positions along the polysaccharide chain. Although many heparin/heparan-sulfate-binding proteins have been described, few exhibit preferential binding for heparan sulfates containing relatively rare 3-O-sulfated glucosamine residues. To expand the "3-O-sulfate proteome," affinity matrices were created from Chinese hamster ovary (CHO) cell heparan sulfate engineered in vitro with and without 3-O-sulfate groups. Fractionation of different animal sera yielded several proteins that bound specifically to columns containing 3-O-sulfated heparan sulfate modified by two members of the heparan sulfate 3-O-sulfotransferase superfamily, Hs3st1 and Hs3st2. Neuropilin-1 was analyzed in detail because it has been implicated in angiogenesis and axon guidance. We show that 3-O-sulfation enhanced the binding of neuropilin-1 to heparan sulfate immobilized on plastic plates and to heparan sulfate present on cultured cells. Chemoenzymatically synthesized 3-O-sulfated heparan sulfate dodecamers protected neuropilin-1 from thermal denaturation and inhibited neuropilin-1-dependent, semaphorin-3a-induced growth cone collapse of neurons derived from murine dorsal root ganglia. The effect of 3-O-sulfation was cell autonomous and specific to Hs3st2 based on collapse assays of neurons derived from Hs3st1- and Hs3st2-deficient mice. Finally, 3-O-sulfated heparan sulfate enhanced the inhibition of endothelial cell sprouting by exogenous heparan sulfate. These findings demonstrate a reliable method to identify members of the 3-O-sulfate proteome and that 3-O-sulfation of heparan sulfate can modulate axonal growth cone collapse and endothelial cell sprouting.


Assuntos
Heparitina Sulfato/metabolismo , Neuropilina-1/metabolismo , Proteoma , Sulfatos/metabolismo , Animais , Sequência de Carboidratos , Bovinos , Humanos , Camundongos , Oligossacarídeos/química , Oligossacarídeos/metabolismo
18.
J Virol ; 90(1): 412-20, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26491162

RESUMO

UNLABELLED: Adeno-associated virus 2 (AAV2) and adenovirus 5 (Ad5) are promising gene therapy vectors. Both display liver tropism and are currently thought to enter hepatocytes in vivo through cell surface heparan sulfate proteoglycans (HSPGs). To test directly this hypothesis, we created mice that lack Ext1, an enzyme required for heparan sulfate biosynthesis, in hepatocytes. Ext1(HEP) mutant mice exhibit an 8-fold reduction of heparan sulfate in primary hepatocytes and a 5-fold reduction of heparan sulfate in whole liver tissue. Conditional hepatocyte Ext1 gene deletion greatly reduced AAV2 liver transduction following intravenous injection. Ad5 transduction requires blood coagulation factor X (FX); FX binds to the Ad5 capsid hexon protein and bridges the virus to HSPGs on the cell surface. Ad5.FX transduction was abrogated in primary hepatocytes from Ext1(HEP) mice. However, in contrast to the case with AAV2, Ad5 transduction was not significantly reduced in the livers of Ext1(HEP) mice. FX remained essential for Ad5 transduction in vivo in Ext1(HEP) mice. We conclude that while AAV2 requires HSPGs for entry into mouse hepatocytes, HSPGs are dispensable for Ad5 hepatocyte transduction in vivo. This study reopens the question of how adenovirus enters cells in vivo. IMPORTANCE: Our understanding of how viruses enter cells, and how they can be used as therapeutic vectors to manage disease, begins with identification of the cell surface receptors to which viruses bind and which mediate viral entry. Both adeno-associated virus 2 and adenovirus 5 are currently thought to enter hepatocytes in vivo through heparan sulfate proteoglycans (HSPGs). However, direct evidence for these conclusions is lacking. Experiments presented herein, in which hepatic heparan sulfate synthesis was genetically abolished, demonstrated that HSPGs are not likely to function as hepatocyte Ad5 receptors in vivo. The data also demonstrate that HSPGs are required for hepatocyte transduction by AAV2. These results reopen the question of the identity of the Ad5 receptor in vivo and emphasize the necessity of demonstrating the nature of the receptor by genetic means, both for understanding Ad5 entry into cells in vivo and for optimization of Ad5 vectors as therapeutic agents.


Assuntos
Adenoviridae/genética , Dependovirus/genética , Heparitina Sulfato/metabolismo , Hepatócitos/virologia , Fígado/virologia , Receptores Virais/metabolismo , Transdução Genética , Animais , Células Cultivadas , Feminino , Vetores Genéticos , Hepatócitos/química , Fígado/química , Masculino , Camundongos
20.
J Cell Sci ; 128(12): 2374-85, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25967551

RESUMO

All Hedgehog morphogens are released from producing cells, despite being synthesized as N- and C-terminally lipidated molecules, a modification that firmly tethers them to the cell membrane. We have previously shown that proteolytic removal of both lipidated peptides, called shedding, releases bioactive Sonic hedgehog (Shh) morphogens from the surface of transfected Bosc23 cells. Using in vivo knockdown together with in vitro cell culture studies, we now show that glypican heparan sulfate proteoglycans regulate this process, through their heparan sulfate chains, in a cell autonomous manner. Heparan sulfate specifically modifies Shh processing at the cell surface, and purified glycosaminoglycans enhance the proteolytic removal of N- and C-terminal Shh peptides under cell-free conditions. The most likely explanation for these observations is direct Shh processing in the extracellular compartment, suggesting that heparan sulfate acts as a scaffold or activator for Shh ligands and the factors required for their turnover. We also show that purified heparan sulfate isolated from specific cell types and tissues mediates the release of bioactive Shh from pancreatic cancer cells, revealing a previously unknown regulatory role for these versatile molecules in a pathological context.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Glipicanas/metabolismo , Proteínas Hedgehog/metabolismo , Neoplasias Pancreáticas/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Western Blotting , Padronização Corporal , Membrana Celular/metabolismo , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas Hedgehog/genética , Heparitina Sulfato/metabolismo , Humanos , Camundongos , Neoplasias Pancreáticas/genética , Proteólise , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...