Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 385
Filtrar
1.
Chin Clin Oncol ; 13(Suppl 1): AB036, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39295354

RESUMO

BACKGROUND: Glioblastoma cells preferentially use de-novo purine synthesis pathway, whereas normal brain prefers salvage pathway. Mycophenolate mofetil (MMF), a commonly used oral immunosuppressant that inhibits inosine-5'-monophosphate dehydrogenase (IMPDH), a key enzyme in the de-novo purine pathway. Pre-clinical suggested MMF can improve radiation and temozolomide efficacy in glioblastoma which led to this phase 0/1 trial (NCT04477200) to assess MMF's tolerability with chemoradiation in glioblastoma, mycophenolic acid accumulation, and purine synthesis inhibition in tumor. METHODS: In the phase 0 study, eight recurrent glioblastoma patients received MMF at doses ranging 500-2,000 mg BID for 1-week before surgery. The tissues were analyzed using mass spectrometry for drug accumulation and purine synthesis inhibition. In the phase 1 study, adult patients were given MMF starting at 1,000 mg orally (PO) twice daily (BID), with the possible dose ranging 500-2,000 PO BID. Nineteen recurrent glioblastoma patients (target N=30) received MMF 1-week prior to and concurrently with re-irradiation (40.5 Gy). Thirty newly diagnosed glioblastoma patients received MMF 1-week prior to and concurrently with chemoradiation, followed by MMF 1-day before and during 5 days of each adjuvant temozolomide cycle. RESULTS: Both enhancing and non-enhancing tumors from phase 0 subjects yielded >1 µM active drug metabolite, and the guanosine triphosphate: inosine monophosphate ratio was decreased by 75% in enhancing tumors in MMF-treated patients compared to untreated controls (P=0.009), indicating effective target engagement and inhibition of purine synthesis. In the phase 1 study, no dose-limiting toxicities (DLTs) were observed at the interim analysis at MMF 1,000-1,500 mg BID combined with chemoradiation. At 2,000 mg BID, there was no DLT combined with temozolomide alone, however, there were four DLTs noted (hemiparesis, cognitive disturbance, fatigue, thrombocytopenia) when combined with radiotherapy and temozolomide together, though all were reversible. Interim median overall survival in recurrent phase 1 is 15.6 months, and not reached yet in newly diagnosed phase 1. CONCLUSIONS: MMF with chemoradiation has been reasonably well tolerated and showed promising evidence of brain tumor target engagement and drug accumulation. This study led to a recommended phase 2 dose of MMF 1,500 mg BID and will provide a preliminary efficacy estimate for a randomized phase 2/3 trial through the Alliance for Clinical Trials in Oncology.


Assuntos
Quimiorradioterapia , Glioblastoma , Purinas , Humanos , Glioblastoma/tratamento farmacológico , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Quimiorradioterapia/métodos , Purinas/farmacologia , Purinas/uso terapêutico , Idoso , Recidiva Local de Neoplasia , Neoplasias Encefálicas/tratamento farmacológico
2.
JCI Insight ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287988

RESUMO

End stage liver disease is marked by portal hypertension, systemic elevations in ammonia, and development of hepatocellular carcinoma (HCC). While these clinical consequences of cirrhosis are well described, it remains poorly understood whether hepatic insufficiency and the accompanying elevations in ammonia contribute to HCC carcinogenesis. Using preclinical models, we discovered that ammonia entered the cell through the transporter SLC4A11 and served as a nitrogen source for amino acid and nucleotide biosynthesis. Elevated ammonia promoted cancer stem cell properties in vitro and tumor initiation in vivo. Enhancing ammonia clearance reduced HCC stemness and tumor growth. In patients, elevations in serum ammonia were associated with an increased incidence of HCC. Taken together, this study forms the foundation for clinical investigations using ammonia lowering agents as potential therapies to mitigate HCC incidence and aggressiveness.

3.
Biochem Biophys Res Commun ; 733: 150711, 2024 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-39312880

RESUMO

Evaluating the steady-state protein level of the EGFR in live cells presents significant challenges compared to measuring its kinase activity. Traditional testing methods, such as immunoblotting, ELISA, and immunofluorescence assays, are generally restricted to fixed cells or cell lysates. Despite their utility, these methods are cumbersome and provide only intermittent snapshots of EGFR levels at specific time points. With emerging trends in drug development shifting toward engineering novel agents that promote protein degradation, rather than simply inhibiting kinase activity, a tool that enables real-time, quantitative detection of drug effects in live cells could catalyze advances in the field. Such an innovation would expedite the drug development process, enhancing the translation of research findings into effective, patient-centered therapies. The NanoLuc-EGFR cell line, created through CRISPR genome editing, allows for the continuous tracking and analysis of EGFR protein levels and their degradation within live cells. This approach provides quantitative monitoring of protein dynamics in real time, offering insights that go beyond absolute protein levels to include aspects such as protein stability and degradation rate. Using this cell line model, we observed that AT13387 and H84T BanLec induce EGFR degradation in A549-HiBiT cells, with the results confirmed by immunoblotting. In contrast, Erlotinib, Osimertinib, and Cetuximab inhibit EGFR phosphorylation without altering total EGFR levels, as validated by the HiBiT luciferase assay. The NanoLuc-EGFR cell line marks a significant advancement in understanding protein regulation and serves as an instrumental platform for investigating targeted therapies that modulate protein kinases, especially those that induce protein degradation.


Assuntos
Receptores ErbB , Receptores ErbB/metabolismo , Receptores ErbB/genética , Humanos , Linhagem Celular Tumoral , Edição de Genes , Compostos de Anilina/farmacologia , Acrilamidas/farmacologia , Proteólise , Linhagem Celular , Sistemas CRISPR-Cas , Indóis , Pirimidinas
4.
bioRxiv ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39253432

RESUMO

Background: Radiotherapy (RT) is the primary treatment for diffuse midline glioma (DMG), a lethal pediatric malignancy defined by histone H3 lysine 27-to-methionine (H3K27M) mutation. Based on the loss of H3K27 trimethylation producing broad epigenomic alterations, we hypothesized that H3K27M causes a functional double-strand break (DSB) repair defect that could be leveraged therapeutically with PARP inhibitor and RT for selective radiosensitization and antitumor immune responses. Methods: H3K27M isogenic DMG cells and orthotopic brainstem DMG tumors in immune deficient and syngeneic, immune competent mice were used to evaluate the efficacy and mechanisms of PARP1/2 inhibition by olaparib or PARP1 inhibition by AZD9574 with concurrent RT. Results: H3K27M mutation caused an HRR defect characterized by impaired RT-induced K63-linked polyubiquitination of histone H1 and inhibition of HRR protein recruitment. H3K27M DMG cells were selectively radiosensitized by olaparib in comparison to isogenic controls, and this effect translated to efficacy in H3K27M orthotopic brainstem tumors. Olaparib and RT induced an innate immune response and induction of NK cell (NKG2D) activating ligands leading to increased NK cell-mediated lysis of DMG tumor cells. In immunocompetent syngeneic orthotopic DMG tumors, either olaparib or AZD9574 in combination with RT enhanced intratumoral NK cell infiltration and activity in association with NK cell-mediated therapeutic responses and favorable activity of AZD9574. Conclusions: The HRR deficiency in H3K27M DMG can be therapeutically leveraged with PARP inhibitors to radiosensitize and induce an NK cell-mediated antitumor immune response selectively in H3K27M DMG, supporting the clinical investigation of best-in-class PARP inhibitors with RT in DMG patients. Key points: H3K27M DMG are HRR defective and selectively radiosensitized by PARP inhibitor.PARP inhibitor with RT enhances NKG2D ligand expression and NK cell-mediated lysis.NK cells are required for the therapeutic efficacy of PARP inhibitor and RT. Importance of the Study: Radiotherapy is the cornerstone of H3K27M-mutant diffuse midline glioma treatment, but almost all patients succumb to tumor recurrence with poor overall survival, underscoring the need for RT-based precision combination therapy. Here, we reveal HRR deficiency as an H3K27M-mediated vulnerability and identify a novel mechanism linking impaired RT-induced histone H1 polyubiquitination and the subsequent RNF168/BRCA1/RAD51 recruitment in H3K27M DMG. This model is supported by selective radiosensitization of H3K27M DMG by PARP inhibitor. Notably, the combination treatment results in NKG2D ligand expression that confers susceptibility to NK cell killing in H3K27M DMG. We also show that the novel brain penetrant, PARP1-selective inhibitor AZD9574 compares favorably to olaparib when combined with RT, prolonging survival in a syngeneic orthotopic model of H3K27M DMG. This study highlights the ability of PARP1 inhibition to radiosensitize and induce an NK cell-mediated antitumor immunity in H3K27M DMG and supports future clinical investigation.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38971385

RESUMO

PURPOSE: Local failure rates after treatment for locally advanced non-small cell lung cancer (NSCLC) remain high. Efforts to improve local control with a uniform dose escalation or dose escalation to midtreatment positron emission tomography (PET)-avid residual disease have been limited by heightened toxicity. This trial aimed to refine response-based adaptive radiation therapy (RT) and minimize toxicity by incorporating fluorodeoxyglucose-PET (FDG-PET) and ventilation-perfusion single-photon emission computed tomography (SPECT) imaging midtreatment. METHODS AND MATERIALS: A total of 47 patients with stage IIA to III unresectable NSCLC were prospectively enrolled in this single-institution trial (NCT02492867). Patients received concurrent chemoradiation therapy with personalized response-based adaptive RT over 30 fractions incorporating ventilation-perfusion single-photon emission computed tomography and FDG-PET. The first 21 fractions (46.2 Gy at 2.2 Gy/fraction) were delivered to the tumor while minimizing the dose to the SPECT-defined functional lung. The plan was then adapted for the final 9 fractions (2.2-3.8 Gy/fraction) up to a total of 80.4 Gy, based on the midtreatment FDG-PET tumor response to escalate the dose to the residual tumor while minimizing the dose to the SPECT-defined functional lung. Nonprogressing patients received consolidative carboplatin, paclitaxel, or durvalumab. The primary endpoint of the study was ≥ grade 2 lung and esophageal toxicities. Secondary endpoints included time to local progression, tumor response, and overall survival. RESULTS: At 1 year posttreatment, the rates of grade 2 and grade 3 pneumonitis were 21.3% and 2.1%, respectively, with no difference in pneumonitis rates among patients who received and did not receive adjuvant durvalumab (P = .74). Although there were no grade 3 esophageal-related toxicities, 66.0% of patients experienced grade 2 esophagitis. The 1- and 2-year local control rates were 94.5% (95% CI, 87.4%-100%) and 87.5% (95% CI, 76.7%-100%), respectively. Overall survival was 82.8% (95% CI, 72.6%-94.4%) at 1 year and 62.3% (95% CI, 49.6%-78.3%) at 2 years. CONCLUSIONS: Response-based adaptive dose-escalation accounting for tumor change and normal tissue function during treatment provided excellent local control, comparable toxicity to standard chemoradiation therapy, and did not increase toxicity with adjuvant immunotherapy.

6.
Mol Cancer Res ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39018356

RESUMO

Frequent (>70%) TP53 mutations often promote its protein stabilization, driving esophageal adenocarcinoma (EAC) development linked to poor survival and therapy resistance. We previously reported that during Barrett's (BE) progression to EAC, an isoform switch occurs in the E3 ubiquitin ligase RNF128 (aka GRAIL - gene related to anergy in lymphocytes), enriching isoform 1 (hereby GRAIL1) and, stabilizing the mutant p53 protein. Consequently, GRAIL1 knockdown degrades mutant p53. But how GRAIL1 stabilizes the mutant p53 protein remains unclear. In search for a mechanism, here we performed biochemical and cell biology studies to identify that GRAIL has a binding domain (315-PMCKCDILKA-325) for Hsp40/DNAJ. This interaction can influence DNAJ chaperone activity to modulate misfolded mutant p53 stability. As predicted, either the overexpression of a GRAIL fragment (Frag-J) encompassing the DNAJ binding domain, or a cell permeable peptide (Pep-J) encoding the above 10 amino acids, can bind and inhibit DNAJ-Hsp70 co-chaperone activity thus degrading misfolded mutant p53. Consequently, either Frag-J or Pep-J can reduce the survival of mutant p53 containing dysplastic BE and EAC cells and inhibit growth of patient-derived dysplastic BE organoids (PDOs) in 3D cultures. The misfolded mutant p53 targeting and growth inhibitory effects of Pep-J is comparable to simvastatin, a cholesterol lowering drug, that can degrade misfolded mutant p53 also via inhibiting DNAJA1, although by a distinct mechanism. Implications: We identified a novel ubiquitin ligase independent, chaperone regulating domain in GRAIL and further synthesized a first-in-class novel misfolded mutant p53 degrading peptide having future translational potential.

7.
Cancer Med ; 13(12): e7253, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38899720

RESUMO

PURPOSE: Real world evidence is crucial to understanding the diffusion of new oncologic therapies, monitoring cancer outcomes, and detecting unexpected toxicities. In practice, real world evidence is challenging to collect rapidly and comprehensively, often requiring expensive and time-consuming manual case-finding and annotation of clinical text. In this Review, we summarise recent developments in the use of artificial intelligence to collect and analyze real world evidence in oncology. METHODS: We performed a narrative review of the major current trends and recent literature in artificial intelligence applications in oncology. RESULTS: Artificial intelligence (AI) approaches are increasingly used to efficiently phenotype patients and tumors at large scale. These tools also may provide novel biological insights and improve risk prediction through multimodal integration of radiographic, pathological, and genomic datasets. Custom language processing pipelines and large language models hold great promise for clinical prediction and phenotyping. CONCLUSIONS: Despite rapid advances, continued progress in computation, generalizability, interpretability, and reliability as well as prospective validation are needed to integrate AI approaches into routine clinical care and real-time monitoring of novel therapies.


Assuntos
Inteligência Artificial , Oncologia , Neoplasias , Humanos , Oncologia/métodos , Oncologia/tendências , Neoplasias/terapia
8.
JCI Insight ; 9(13)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781019

RESUMO

Immunosuppression is a common feature of esophageal adenocarcinoma (EAC) and has been linked to poor overall survival (OS). We hypothesized that upstream factors might negatively influence CD3 levels and T cell activity, thus promoting immunosuppression and worse survival. We used clinical data and patient samples of those who progressed from Barrett's to dysplasia to EAC, investigated gene (RNA-Seq) and protein (tissue microarray) expression, and performed cell biology studies to delineate a pathway impacting CD3 protein stability that might influence EAC outcome. We showed that the loss of both CD3-ε expression and CD3+ T cell number correlated with worse OS in EAC. The gene related to anergy in lymphocytes isoform 1 (GRAIL1), which is the prominent isoform in EACs, degraded (ε, γ, δ) CD3s and inactivated T cells. In contrast, isoform 2 (GRAIL2), which is reduced in EACs, stabilized CD3s. Further, GRAIL1-mediated CD3 degradation was facilitated by interferon-stimulated gene 15 (ISG15), a ubiquitin-like protein. Consequently, the overexpression of a ligase-dead GRAIL1, ISG15 knockdown, or the overexpression of a conjugation-defective ISG15-leucine-arginine-glycine-glycine mutant could increase CD3 levels. Together, we identified an ISG15/GRAIL1/mutant p53 amplification loop negatively influencing CD3 levels and T cell activity, thus promoting immunosuppression in EAC.


Assuntos
Adenocarcinoma , Complexo CD3 , Citocinas , Neoplasias Esofágicas , Ubiquitinas , Humanos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/imunologia , Adenocarcinoma/genética , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Adenocarcinoma/metabolismo , Adenocarcinoma/imunologia , Complexo CD3/metabolismo , Complexo CD3/genética , Citocinas/metabolismo , Ubiquitinas/metabolismo , Ubiquitinas/genética , Masculino , Linfócitos T/metabolismo , Linfócitos T/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica , Esôfago de Barrett/patologia , Esôfago de Barrett/genética , Esôfago de Barrett/metabolismo , Pessoa de Meia-Idade
9.
Cell Death Dis ; 15(3): 194, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38453895

RESUMO

The advancement of RNAseq and isoform-specific expression platforms has led to the understanding that isoform changes can alter molecular signaling to promote tumorigenesis. An active area in cancer research is uncovering the roles of ubiquitination on spliceosome assembly contributing to transcript diversity and expression of alternative isoforms. However, the effects of isoform changes on functionality of ubiquitination machineries (E1, E2, E3, E4, and deubiquitinating (DUB) enzymes) influencing onco- and tumor suppressor protein stabilities is currently understudied. Characterizing these changes could be instrumental in improving cancer outcomes via the identification of novel biomarkers and targetable signaling pathways. In this review, we focus on highlighting reported examples of direct, protein-coded isoform variation of ubiquitination enzymes influencing cancer development and progression in gastrointestinal (GI) malignancies. We have used a semi-automated system for identifying relevant literature and applied established systems for isoform categorization and functional classification to help structure literature findings. The results are a comprehensive snapshot of known isoform changes that are significant to GI cancers, and a framework for readers to use to address isoform variation in their own research. One of the key findings is the potential influence that isoforms of the ubiquitination machinery have on oncoprotein stability.


Assuntos
Neoplasias Gastrointestinais , Humanos , Ubiquitinação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Neoplasias Gastrointestinais/genética , Carcinogênese , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
10.
JCI Insight ; 9(6)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376927

RESUMO

Radiotherapy induces a type I interferon-mediated (T1IFN-mediated) antitumoral immune response that we hypothesized could be potentiated by a first-in-class ataxia telangiectasia mutated (ATM) inhibitor, leading to enhanced innate immune signaling, T1IFN expression, and sensitization to immunotherapy in pancreatic cancer. We evaluated the effects of AZD1390 or a structurally related compound, AZD0156, on innate immune signaling and found that both inhibitors enhanced radiation-induced T1IFN expression via the POLIII/RIG-I/MAVS pathway. In immunocompetent syngeneic mouse models of pancreatic cancer, ATM inhibitor enhanced radiation-induced antitumoral immune responses and sensitized tumors to anti-PD-L1, producing immunogenic memory and durable tumor control. Therapeutic responses were associated with increased intratumoral CD8+ T cell frequency and effector function. Tumor control was dependent on CD8+ T cells, as therapeutic efficacy was blunted in CD8+ T cell-depleted mice. Adaptive immune responses to combination therapy provided systemic control of contralateral tumors outside of the radiation field. Taken together, we show that a clinical candidate ATM inhibitor enhances radiation-induced T1IFN, leading to both innate and subsequent adaptive antitumoral immune responses and sensitization of otherwise resistant pancreatic cancer to immunotherapy.


Assuntos
Ataxia Telangiectasia , Interferon Tipo I , Neoplasias Pancreáticas , Piridinas , Quinolonas , Animais , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/radioterapia , Neoplasias Pancreáticas/patologia , Imunidade
11.
Pract Radiat Oncol ; 14(2): 134-145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38244026

RESUMO

PURPOSE: External beam radiation therapy (EBRT) is a highly effective treatment in select patients with hepatocellular carcinoma (HCC). However, the Barcelona Clinic Liver Cancer system does not recommend the use of EBRT in HCC due to a lack of sufficient evidence and intends to perform an individual patient level meta-analysis of ablative EBRT in this population. However, there are many types of EBRT described in the literature with no formal definition of what constitutes "ablative." Thus, we convened a group of international experts to provide consensus on the parameters that define ablative EBRT in HCC. METHODS AND MATERIALS: Fundamental parameters related to dose, fractionation, radiobiology, target identification, and delivery technique were identified by a steering committee to generate 7 Key Criteria (KC) that would define ablative EBRT for HCC. Using a modified Delphi (mDelphi) method, experts in the use of EBRT in the treatment of HCC were surveyed. Respondents were given 30 days to respond in round 1 of the mDelphi and 14 days to respond in round 2. A threshold of ≥70% was used to define consensus for answers to each KC. RESULTS: Of 40 invitations extended, 35 (88%) returned responses. In the first round, 3 of 7 KC reached consensus. In the second round, 100% returned responses and consensus was reached in 3 of the remaining 4 KC. The distribution of answers for one KC, which queried the a/b ratio of HCC, was such that consensus was not achieved. Based on this analysis, ablative EBRT for HCC was defined as a BED10 ≥80 Gy with daily imaging and multiphasic contrast used for target delineation. Treatment breaks (eg, for adaptive EBRT) are allowed, but the total treatment time should be ≤6 weeks. Equivalent dose when treating with protons should use a conversion factor of 1.1, but there is no single conversion factor for carbon ions. CONCLUSIONS: Using a mDelphi method assessing expert opinion, we provide the first consensus definition of ablative EBRT for HCC. Empirical data are required to define the a/b of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/radioterapia , Consenso , Neoplasias Hepáticas/radioterapia , Instituições de Assistência Ambulatorial , Carbono
12.
Cell Rep ; 43(2): 113687, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38261515

RESUMO

Circulating tumor cells (CTCs) are early signs of metastasis and can be used to monitor disease progression well before radiological detection by imaging. Using an ultrasensitive graphene oxide microfluidic chip nanotechnology built with graphene oxide sheets, we were able to demonstrate that CTCs can be specifically isolated and molecularly characterized to predict future progression in patients with stage III non-small cell lung cancer (NSCLC). We analyzed CTCs from 26 patients at six time points throughout the treatment course of chemoradiation followed by immune checkpoint inhibitor immunotherapy. We observed that CTCs decreased significantly during treatment, where a larger decrease in CTCs predicted a significantly longer progression-free survival time. Durvalumab-treated patients who have future progression were observed to have sustained higher programmed death ligand 1+ CTCs compared to stable patients. Gene expression profiling revealed phenotypically aggressive CTCs during chemoradiation. By using emerging innovative bioengineering approaches, we successfully show that CTCs are potential biomarkers to monitor and predict patient outcomes in patients with stage III NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Grafite , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/metabolismo , Imunoterapia , Progressão da Doença
13.
Cancer Discov ; 14(1): 158-175, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-37902550

RESUMO

How cell metabolism regulates DNA repair is incompletely understood. Here, we define a GTP-mediated signaling cascade that links metabolism to DNA repair and has significant therapeutic implications. GTP, but not other nucleotides, regulates the activity of Rac1, a guanine nucleotide-binding protein, which promotes the dephosphorylation of serine 323 on Abl-interactor 1 (Abi-1) by protein phosphatase 5 (PP5). Dephosphorylated Abi-1, a protein previously not known to activate DNA repair, promotes nonhomologous end joining. In patients and mouse models of glioblastoma, Rac1 and dephosphorylated Abi-1 mediate DNA repair and resistance to standard-of-care genotoxic treatments. The GTP-Rac1-PP5-Abi-1 signaling axis is not limited to brain cancer, as GTP supplementation promotes DNA repair and Abi-1-S323 dephosphorylation in nonmalignant cells and protects mouse tissues from genotoxic insult. This unexpected ability of GTP to regulate DNA repair independently of deoxynucleotide pools has important implications for normal physiology and cancer treatment. SIGNIFICANCE: A newly described GTP-dependent signaling axis is an unexpected link between nucleotide metabolism and DNA repair. Disrupting this pathway can overcome cancer resistance to genotoxic therapy while augmenting it can mitigate genotoxic injury of normal tissues. This article is featured in Selected Articles from This Issue, p. 5.


Assuntos
Glioblastoma , Transdução de Sinais , Humanos , Camundongos , Animais , Transdução de Sinais/genética , Reparo do DNA , Dano ao DNA , Guanosina Trifosfato
14.
Adv Radiat Oncol ; 8(6): 101266, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38047228

RESUMO

Purpose: Patients with pancreatic cancer undergoing chemoradiation therapy may experience acute and chronic side effects. We conducted an exploratory analysis of patients with locally advanced pancreatic cancer (LAPC) undergoing definitive chemoradiation to identify factors influencing the occurrence of gastrointestinal (GI) bleeding, short-term radiation side effects, patterns of failure, and survival. Methods and Materials: Under an institutional review board-approved protocol, we retrospectively studied patients with LAPC treated with chemoradiation. Statistical models were used to test associations between clinical characteristics and outcomes, including upper GI bleeding, radiation treatment breaks, and weight loss during therapy. Results: Between 1999 and 2012, 211 patients were treated with radiation for pancreatic cancer. All patients received concurrent chemotherapy with either gemcitabine (174) or 5-fluorouracil (27), and 67 received intensity modulated radiation therapy (IMRT). Overall, 18 patients experienced an upper GI bleed related to treatment, with 70% of bleeds occurring in the stomach or duodenum, and among those patients, 11 (61%) patients had a pancreatic head tumor and 17 (94%) patients had a metallic biliary stent. IMRT was associated with decreased risk of postradiation nausea (odds ratio, 0.27 [0.11, 0.67], P = .006) compared with 3-dimensional conformal radiation. Regarding long-term toxicities, patients with a metallic biliary stent at the time of radiation therapy were at a significantly higher risk of developing upper GI bleeding (unadjusted hazard ratio [HR], 15.41 [2.02, 117.42], P = .008), even after controlling for radiation treatment modality and prescribed radiation dose (adjusted HR, 17.38 [2.26, 133.58], P = .006). Furthermore, biliary stent placement was associated with a higher risk of death (HR, 1.99 [1.41, 2.83], P < .001) after adjusting for demographic, treatment-related, and patient-related variables. Conclusions: Metallic biliary stents may be associated with an increased risk of upper GI bleeding and mortality. Furthermore, IMRT was associated with less nausea and short-term toxicity compared with 3-dimensional conformal therapy.

15.
medRxiv ; 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37961582

RESUMO

The brain avidly consumes glucose to fuel neurophysiology. Cancers of the brain, such as glioblastoma (GBM), lose aspects of normal biology and gain the ability to proliferate and invade healthy tissue. How brain cancers rewire glucose utilization to fuel these processes is poorly understood. Here we perform infusions of 13 C-labeled glucose into patients and mice with brain cancer to define the metabolic fates of glucose-derived carbon in tumor and cortex. By combining these measurements with quantitative metabolic flux analysis, we find that human cortex funnels glucose-derived carbons towards physiologic processes including TCA cycle oxidation and neurotransmitter synthesis. In contrast, brain cancers downregulate these physiologic processes, scavenge alternative carbon sources from the environment, and instead use glucose-derived carbons to produce molecules needed for proliferation and invasion. Targeting this metabolic rewiring in mice through dietary modulation selectively alters GBM metabolism and slows tumor growth. Significance: This study is the first to directly measure biosynthetic flux in both glioma and cortical tissue in human brain cancer patients. Brain tumors rewire glucose carbon utilization away from oxidation and neurotransmitter production towards biosynthesis to fuel growth. Blocking these metabolic adaptations with dietary interventions slows brain cancer growth with minimal effects on cortical metabolism.

16.
Cancer J ; 29(5): 266-271, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37796644

RESUMO

ABSTRACT: Stereotactic body radiation therapy has emerged as a safe and effective treatment modality for properly selected hepatocellular cancer (HCC) patients with normal liver function. However, many HCC patients have reduced baseline liver function due to underlying cirrhosis or prior liver-directed therapies. Therefore, because of the increased risk of hepatotoxicity, the use of stereotactic body radiation therapy for patients with reduced liver function has been approached with caution. Individualized, response-based radiotherapy incorporates models, imaging tools, and biomarkers that determine the dose-response relationship of the liver before, during, and after treatment and has been useful in reducing the likelihood of liver damage without sacrificing tumor control. This review discusses the evolution of response-based radiotherapy for HCC and highlights areas for further investigation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Radiocirurgia , Humanos , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/radioterapia , Resultado do Tratamento , Dosagem Radioterapêutica , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos
17.
Lancet Oncol ; 24(9): 1042-1052, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37657463

RESUMO

BACKGROUND: High-grade gliomas have a poor prognosis and do not respond well to treatment. Effective cancer immune responses depend on functional immune cells, which are typically absent from the brain. This study aimed to evaluate the safety and activity of two adenoviral vectors expressing HSV1-TK (Ad-hCMV-TK) and Flt3L (Ad-hCMV-Flt3L) in patients with high-grade glioma. METHODS: In this dose-finding, first-in-human trial, treatment-naive adults aged 18-75 years with newly identified high-grade glioma that was evaluated per immunotherapy response assessment in neuro-oncology criteria, and a Karnofsky Performance Status score of 70 or more, underwent maximal safe resection followed by injections of adenoviral vectors expressing HSV1-TK and Flt3L into the tumour bed. The study was conducted at the University of Michigan Medical School, Michigan Medicine (Ann Arbor, MI, USA). The study included six escalating doses of viral particles with starting doses of 1×1010 Ad-hCMV-TK viral particles and 1×109 Ad-hCMV-Flt3L viral particles (cohort A), and then 1×1011 Ad-hCMV-TK viral particles and 1×109 Ad-hCMV-Flt3L viral particles (cohort B), 1×1010 Ad-hCMV-TK viral particles and 1×1010 Ad-hCMV-Flt3L viral particles (cohort C), 1×1011 Ad-hCMV-TK viral particles and 1×1010 Ad-hCMV-Flt3L viral particles (cohort D), 1×1010 Ad-hCMV-TK viral particles and 1×1011 Ad-hCMV-Flt3L viral particles (cohort E), and 1×1011 Ad-hCMV-TK viral particles and 1×1011 Ad-hCMV-Flt3L viral particles (cohort F) following a 3+3 design. Two 1 mL tuberculin syringes were used to deliver freehand a mix of Ad-hCMV-TK and Ad-hCMV-Flt3L vectors into the walls of the resection cavity with a total injection of 2 mL distributed as 0·1 mL per site across 20 locations. Subsequently, patients received two 14-day courses of valacyclovir (2 g orally, three times per day) at 1-3 days and 10-12 weeks after vector administration and standad upfront chemoradiotherapy. The primary endpoint was the maximum tolerated dose of Ad-hCMV-Flt3L and Ad-hCMV-TK. Overall survival was a secondary endpoint. Recruitment is complete and the trial is finished. The trial is registered with ClinicalTrials.gov, NCT01811992. FINDINGS: Between April 8, 2014, and March 13, 2019, 21 patients were assessed for eligibility and 18 patients with high-grade glioma were enrolled and included in the analysis (three patients in each of the six dose cohorts); eight patients were female and ten were male. Neuropathological examination identified 14 (78%) patients with glioblastoma, three (17%) with gliosarcoma, and one (6%) with anaplastic ependymoma. The treatment was well-tolerated, and no dose-limiting toxicity was observed. The maximum tolerated dose was not reached. The most common serious grade 3-4 adverse events across all treatment groups were wound infection (four events in two patients) and thromboembolic events (five events in four patients). One death due to an adverse event (respiratory failure) occurred but was not related to study treatment. No treatment-related deaths occurred during the study. Median overall survival was 21·3 months (95% CI 11·1-26·1). INTERPRETATION: The combination of two adenoviral vectors demonstrated safety and feasibility in patients with high-grade glioma and warrants further investigation in a phase 1b/2 clinical trial. FUNDING: Funded in part by Phase One Foundation, Los Angeles, CA, The Board of Governors at Cedars-Sinai Medical Center, Los Angeles, CA, and The Rogel Cancer Center at The University of Michigan.


Assuntos
Antineoplásicos , Glioblastoma , Glioma , Adulto , Feminino , Humanos , Masculino , Quimiorradioterapia , Terapia Genética , Glioblastoma/genética , Glioblastoma/terapia , Glioma/genética , Glioma/terapia , Adolescente , Pessoa de Meia-Idade , Idoso
18.
Int J Radiat Oncol Biol Phys ; 117(5): 1236-1240, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37414260

RESUMO

There is debate about why stereotactic body radiation therapy (SBRT) produces superior control of hepatocellular cancer (HCC) compared to fractionated treatment. Both preclinical and clinical evidence has been presented to support a "classic" biological explanation: the greater BED of SBRT produces more DNA damage and tumor cell kill. More recently, preclinical evidence has supported the concept of a "new biology", particularly radiation-induced vascular collapse, which increases hypoxia and free radical activation. This is hypothesized to cause much greater tumor cell death than was produced by the initial radiation-induced DNA damage to the tumor. We decided to investigate if vascular collapse occurs after standard SBRT for patients with HCC. Eight patients with 10 lesions underwent dynamic contrast enhanced MRI at the time of simulation and either 48 or 96 hours after the first fraction. Only three of 10 tumors showed a decrease in blood flow. These findings suggest that vascular collapse does not typically occur after SBRT for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Radiocirurgia , Humanos , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/patologia , Radiocirurgia/efeitos adversos , Fracionamento da Dose de Radiação , Dano ao DNA
19.
Clin Cancer Res ; 29(19): 3852-3858, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37471457

RESUMO

PURPOSE: We hypothesized that optimizing the utility of stereotactic body radiotherapy (SBRT) based on the individual patient's probability for tumor control and risk of liver injury would decrease toxicity without sacrificing local control in patients with impaired liver function or tumors not amenable to thermal ablation. PATIENTS AND METHODS: Patients with Child-Pugh (CP) A to B7 liver function with aggregate tumor size >3.5 cm, or CP ≥ B8 with any size tumor were prospectively enrolled on an Institutional Review Board-approved phase II clinical trial to undergo SBRT with baseline and midtreatment dose optimization using a quantitative, individualized utility-based analysis. Primary endpoints were change in CP score of ≥2 points within 6 months and local control. Protocol-treated patients were compared with patients receiving conventional SBRT at another cancer center using overlap weighting. RESULTS: A total of 56 patients with 80 treated tumors were analyzed with a median follow-up of 11.2 months. Two-year cumulative incidence of local progression was 6.4% [95% confidence interval (CI, 2.4-13.4)]. Twenty-one percent of patients experienced treatment-related toxicity within 6 months, which is similar to the rate for SBRT in patients with CP A liver function. An analysis using overlap weighting revealed similar local control [HR, 0.69; 95% CI (0.25-1.91); P = 0.48] and decreased toxicity [OR, 0.26; 95% CI (0.07-0.99); P = 0.048] compared with conventional SBRT. CONCLUSIONS: Treatment of individuals with impaired liver function or tumors not amenable to thermal ablation with a treatment paradigm designed to optimize utility may decrease treatment-related toxicity while maintaining tumor control.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Radiocirurgia , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Resultado do Tratamento , Dosagem Radioterapêutica , Radiocirurgia/efeitos adversos , Estudos Retrospectivos
20.
Cancer J ; 29(4): 238-242, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37471615

RESUMO

ABSTRACT: In this article, as part of this special issue on biomarkers of early response, we review currently available reports regarding magnetic resonance imaging apparent diffusion coefficient (ADC) changes in hepatocellular carcinoma (HCC) in response to stereotactic body radiation therapy. We compare diffusion image acquisition, ADC analysis, methods for HCC response assessment, and statistical methods for prediction of local tumor progression by ADC metrics. We discuss the pros and cons of these studies. Following detailed analyses of existing investigations, we cannot conclude that ADC is established as an imaging biomarker for stereotactic body radiation therapy assessment in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/radioterapia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Biomarcadores , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...