Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Cancer Cell ; 42(6): 936-938, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38821062

RESUMO

Cellular mechanisms mediating immunotherapy resistances are incompletely understood. In this issue, Li et al. reveal how breast cancer hijacks neuronal mechanisms of neuroprotection to shield itself from the immune system. Secretion of N-acetylaspartate impairs immune synapse formation in both neuroinflammation and breast cancer models, paving the way for novel therapeutic approaches.


Assuntos
Neoplasias da Mama , Neurônios , Humanos , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Feminino , Neurônios/metabolismo , Neurônios/imunologia , Sistema Imunitário/imunologia , Animais
2.
Front Cell Neurosci ; 15: 754530, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776868

RESUMO

Dravet syndrome (DS) is a developmental epileptic encephalopathy mainly caused by functional NaV1.1 haploinsufficiency in inhibitory interneurons. Recently, a new conditional mouse model expressing the recurrent human p.(Ala1783Val) missense variant has become available. In this study, we provided an electrophysiological characterization of this variant in tsA201 cells, revealing both altered voltage-dependence of activation and slow inactivation without reduced sodium peak current density. Based on these data, simulated interneuron (IN) firing properties in a conductance-based single-compartment model suggested surprisingly similar firing deficits for NaV1.1A1783V and full haploinsufficiency as caused by heterozygous truncation variants. Impaired NaV1.1A1783V channel activation was predicted to have a significantly larger impact on channel function than altered slow inactivation and is therefore proposed as the main mechanism underlying IN dysfunction. The computational model was validated in cortical organotypic slice cultures derived from conditional Scn1a A1783V mice. Pan-neuronal activation of the p.Ala1783V in vitro confirmed a predicted IN firing deficit and revealed an accompanying reduction of interneuronal input resistance while demonstrating normal excitability of pyramidal neurons. Altered input resistance was fed back into the model for further refinement. Taken together these data demonstrate that primary loss of function (LOF) gating properties accompanied by altered membrane characteristics may match effects of full haploinsufficiency on the neuronal level despite maintaining physiological peak current density, thereby causing DS.

3.
Epilepsia ; 62(11): 2790-2803, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34553376

RESUMO

OBJECTIVE: Lamotrigine and other sodium-channel blocking agents are among the most commonly used antiepileptic drugs (AEDs). Because other sodium channel blockers, such as riluzole, can severely alter respiratory rhythm generation during hypoxia, we wanted to investigate if AEDs can have similar effects. This is especially important in the context of sudden unexpected death in epilepsy (SUDEP), the major cause of death in patients suffering from therapy-resistant epilepsy. Although the mechanism of action is not entirely understood, respiratory dysfunction after generalized tonic-clonic seizures seems to play a major role. METHODS: We used transverse brainstem slice preparations from neonatal and juvenile mice containing the pre-Bötzinger complex (PreBötC) and measured population as well as intracellular activity of the rhythm-generating network under normoxia and hypoxia in the presence or absence of AEDs. RESULTS: We found a substantial inhibition of the gasping response induced by the application of sodium channel blockers (lamotrigine and carbamazepine). In contrast, levetiracetam, an AED-modulating synaptic function, had a much smaller effect. The inhibition of gasping by lamotrigine was accompanied by a significant reduction of the persistent sodium current (INap) in PreBötC neurons. Surprisingly, the suppression of persistent sodium currents by lamotrigine did not affect the voltage-dependent bursting activity in PreBötC pacemaker neurons, but led to a hypoxia-dependent shift of the action potential rheobase in all measured PreBötC neurons. SIGNIFICANCE: Our results contribute to the understanding of the effects of AEDs on the vital respiratory functions of the central nervous system. Moreover, our study adds further insight into sodium-dependent changes occurring during hypoxia and the contribution of cellular properties to the respiratory rhythm generation in the pre-Bötzinger complex. It raises the question of whether sodium channel blocking AEDs could, in conditions of extreme hypoxia, contribute to SUDEP, an important issue that warrants further studies.


Assuntos
Anticonvulsivantes , Morte Súbita Inesperada na Epilepsia , Animais , Anticonvulsivantes/efeitos adversos , Hipóxia , Lamotrigina , Camundongos , Sódio , Bloqueadores dos Canais de Sódio/farmacologia , Bloqueadores dos Canais de Sódio/uso terapêutico
4.
Front Neurosci ; 14: 283, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32372899

RESUMO

Human cerebrospinal fluid (hCSF) has proven advantageous over conventional medium for culturing both rodent and human brain tissue. In addition, increased activity and synchrony, closer to the dynamic states exclusively recorded in vivo, were reported in rodent slices and cell cultures switching from artificial cerebrospinal fluid (aCSF) to hCSF. This indicates that hCSF possesses properties that are not matched by the aCSF, which is generally used for most electrophysiological recordings. To evaluate the possible significance of using hCSF as an electrophysiological recording medium, also for human brain tissue, we compared the network and single-cell firing properties of human brain slice cultures during perfusion with hCSF and aCSF. For measuring the overall activity from a majority of neurons within neocortical and hippocampal human slices, we used a microelectrode array (MEA) recording technique with 252 electrodes covering an area of 3.2 × 3.2 mm2. A second CMOS-based MEA with 4225 sensors on a 2 × 2 mm2 area was used for detailed mapping of action potential waveforms and cell identification. We found that hCSF increased the number of active electrodes and neurons and the firing rate of the neurons in the slices and induced an increase in the numbers of single channel and population bursts. Interestingly, not only an increase in the overall activity in the slices was observed, but a reconfiguration of the network could also be detected with specific activation and inactivation of subpopulations of neuronal ensembles. In conclusion, hCSF is an important component to consider for future human brain slice studies, especially for experiments designed to mimic parts of physiology and disease observed in vivo.

5.
Elife ; 82019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31498083

RESUMO

Most of our knowledge on human CNS circuitry and related disorders originates from model organisms. How well such data translate to the human CNS remains largely to be determined. Human brain slice cultures derived from neurosurgical resections may offer novel avenues to approach this translational gap. We now demonstrate robust preservation of the complex neuronal cytoarchitecture and electrophysiological properties of human pyramidal neurons in long-term brain slice cultures. Further experiments delineate the optimal conditions for efficient viral transduction of cultures, enabling 'high throughput' fluorescence-mediated 3D reconstruction of genetically targeted neurons at comparable quality to state-of-the-art biocytin fillings, and demonstrate feasibility of long term live cell imaging of human cells in vitro. This model system has implications toward a broad spectrum of translational studies, regarding the validation of data obtained in non-human model systems, for therapeutic screening and genetic dissection of human CNS circuitry.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Técnicas de Cultura de Órgãos/métodos , Adulto , Encéfalo/patologia , Encéfalo/fisiopatologia , Humanos , Microscopia Intravital/métodos , Células Piramidais/patologia , Células Piramidais/fisiologia
6.
Pflugers Arch ; 470(3): 537-547, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29218453

RESUMO

We have shown previously that genetic or pharmacological deletion of KATP channels protect against beta cell dysfunction induced by reactive oxygen species (ROS). Since it is assumed that glucolipotoxicity (GLTx) causes ROS production, we aimed to evaluate whether suppression of KATP channel activity can also prevent beta cell damage evoked by GLTx. We used an in vitro model of GLTx and measured distinct parameters of stimulus-secretion coupling. GLTx gradually induced disturbances of Ca2+ oscillations over 3 days. This impairment in Ca2+ dynamics was partially reversed in beta cells without functional KATP channels (SUR1-/-) and by the sulfonylurea gliclazide but not by tolbutamide. By contrast, the GLTx-induced suppression of glucose-induced insulin secretion could not be rescued by decreased KATP channel activity pointing to a direct interaction of GLTx with the secretory capacity. Accordingly, GLTx also suppressed KCl-induced insulin secretion. GLTx was not accompanied by decisively increased ROS production or enhanced apoptosis. Insulin content of beta cells was markedly reduced by GLTx, an effect not prevented by gliclazide. Since GLTx markedly diminished the mitochondrial membrane potential and cellular ATP content, lack of ATP is assumed to decrease insulin biosynthesis. The deleterious effect of GLTx is therefore caused by direct interference with the secretory capacity whereby reduction of insulin content is one important parameter. These findings deepen our understanding how GLTx damages beta cells and reveal that GLTx is disconnected from ROS formation, a notion important for targeting beta cells in the treatment of diabetes. Overall, GLTx-induced energy depletion may be a primary step in the cascade of events leading to loss of beta cell function in type-2 diabetes mellitus.


Assuntos
Apoptose , Metabolismo Energético , Células Secretoras de Insulina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Gliclazida/farmacologia , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Canais KATP/metabolismo , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL , Tolbutamida/farmacologia
7.
Int J Mol Sci ; 19(1)2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29267189

RESUMO

Locus coeruleus-noradrenergic system dysfunction is known to contribute to the progression of Alzheimer's disease (AD). Besides a variety of reports showing the involvement of norepinephrine and its receptor systems in cognition, amyloid ß (Aß) metabolism, neuroinflammation, and neurogenesis, little is known about the contribution of the specific receptors to these actions. Here, we investigated the neurogenic and neuroprotective properties of a new α2 adrenoblocker, mesedin, in astroglial primary cultures (APC) from C57BL/6 and 3×Tg-AD mice. Our results demonstrate that mesedin rescues neuronal precursors and young neurons, and reduces the lactate dehydrogenase (LDH) release from astroglia under hypoxic and normoxic conditions. Mesedin also increased choline acetyltransferase, postsynaptic density marker 95 (PSD95), and Aß-degrading enzyme neprilysin in the wild type APC, while in the 3×Tg-AD APC exposed to glutamate, it decreased the intracellular content of Aß and enhanced the survival of synaptophysin-positive astroglia and neurons. These effects in APC can at least partially be attributed to the mesedin's ability of increasing the expression of Interleukine(IL)-10, which is a potent anti-inflammatory, neuroprotective neurogenic, and Aß metabolism enhancing factor. In summary, our data identify the neurogenic, neuroprotective, and anti-amyloidogenic action of mesedin in APC. Further in vivo studies are needed to estimate the therapeutic value of mesedin for AD.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Astrócitos/efeitos dos fármacos , Dioxanos/farmacologia , Dioxanos/uso terapêutico , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Antagonistas de Receptores Adrenérgicos alfa 2/química , Antagonistas de Receptores Adrenérgicos alfa 2/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Animais , Astrócitos/citologia , Biomarcadores Farmacológicos/análise , Sobrevivência Celular/efeitos dos fármacos , Dioxanos/química , Ácido Glutâmico/metabolismo , Hipóxia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/citologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/uso terapêutico , Cultura Primária de Células , Tiazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...