Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38540084

RESUMO

Prognoses for TNBC remain poor due to its aggressive nature and the lack of therapies that target its "drivers". RASA1, a RAS-GAP or GTPase-activating protein whose activity inhibits RAS signaling, is downregulated in up to 77% of TNBC cases. As such, RAS proteins become hyperactive and similar in effect to mutant hyperactive RAS proteins with impaired GTPase activities. PCAIs are a novel class of agents designed to target and disrupt the activities of KRAS and other G-proteins that are hyperactive in various cancers. This study shows the anticancer mechanisms of the PCAIs in two breast cancer cell lines, MDA-MB-468 and MDA-MB-231. PCAIs (NSL-YHJ-2-27) treatment increased BRAF phosphorylation, whereas CRAF phosphorylation significantly decreased in both cell lines. Moreover, the PCAIs also stimulated the phosphorylation of MEK, ERK, and p90RSK by 116, 340, and 240% in MDA-MB-468 cells, respectively. However, in MDA-MB-231 cells, a significant increase of 105% was observed only in p90RSK phosphorylation. Opposing effects were observed for AKT phosphorylation, whereby an increase was detected in MDA-MB-468 cells and a decrease in MDA-MB-231 cells. The PCAIs also induced apoptosis, as observed in the increased pro-apoptotic protein BAK1, by 51%, after treatment. The proportion of live cells in PCAIs-treated spheroids decreased by 42 and 34% in MDA-MB-468 and MDA-MB-231 cells, respectively, which further explains the PCAIs-induced apoptosis. The movement of the cells through the Matrigel was also inhibited by 74% after PCAIs exposure, which could have been due to the depleted levels of F-actin and vinculin punctate, resulting in the shrinkage of the cells by 76%, thereby impeding cell movement. These results show promise for PCAIs as potential therapies for TNBC as they significantly inhibit the hallmark processes and pathways that promote cell proliferation, migration, and invasion, which result in poor prognoses for breast cancer patients.

2.
Oncotarget ; 14: 243-257, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36961909

RESUMO

Finding effective therapies against cancers driven by mutant and/or overexpressed hyperactive G-proteins remains an area of active research. Polyisoprenylated cysteinyl amide inhibitors (PCAIs) are agents that mimic the essential posttranslational modifications of G-proteins. It is hypothesized that PCAIs work as anticancer agents by disrupting polyisoprenylation-dependent functional interactions of the G-Proteins. This study tested this hypothesis by determining the effect of the PCAIs on the levels of RAS and related monomeric G-proteins. Following 48 h exposure, we found significant decreases in the levels of KRAS, RHOA, RAC1, and CDC42 ranging within 20-66% after NSL-YHJ-2-27 (5 µM) treatment in all four cell lines tested, A549, NCI-H1299, MDA-MB-231, and MDA-MB-468. However, no significant difference was observed on the G-protein, RAB5A. Interestingly, 38 and 44% decreases in the levels of the farnesylated and acylated NRAS were observed in the two breast cancer cell lines, MDA-MB-231, and MDA-MB-468, respectively, while HRAS levels showed a 36% decrease only in MDA-MB-468 cells. Moreover, after PCAIs treatment, migration, and invasion of A549 cells were inhibited by 72 and 70%, respectively while the levels of vinculin and fascin dropped by 33 and 43%, respectively. These findings implicate the potential role of PCAIs as anticancer agents through their direct interaction with monomeric G-proteins.


Assuntos
Antineoplásicos , Neoplasias da Mama , Proteínas Monoméricas de Ligação ao GTP , Humanos , Feminino , Movimento Celular , Linhagem Celular Tumoral , Proteínas Monoméricas de Ligação ao GTP/farmacologia , Amidas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos/farmacologia , Pulmão , Proliferação de Células
3.
J Appl Microbiol ; 132(4): 2746-2759, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35019198

RESUMO

AIM: Bacteria naturally produce membrane vesicles (MVs), which have been shown to contribute to the spread of multi-drug resistant bacteria (MDR) by delivering antibiotic-resistant substances to antibiotic-susceptible bacteria. Here, we aim to show that MVs from Gram-positive bacteria are capable of transferring ß-lactam antibiotic-resistant substances to antibiotic-sensitive Gram-negative bacteria. MATERIALS AND METHODS: MVs were collected from a methicillin-resistant strain of Staphylococcus aureus (MRSA) and vesicle-mediated fusion with antimicrobial-sensitive Escherichia coli (RC85). It was performed by exposing the bacteria to the MVs to develop antimicrobial-resistant E. coli (RC85-T). RESULTS: The RC85-T exhibited a higher resistance to ß-lactam antibiotics compared to the parent strain. Although the secretion rates of the MVs from RC85-T and the parent strain were nearly equal, the ß-lactamase activity of the MVs from RC85-T was 12-times higher than that of MVs from the parent strain, based on equivalent protein concentrations. Moreover, MVs secreted by RC85-T were able to protect ß-lactam-susceptible E. coli from ß-lactam antibiotic-induced growth inhibition in a dose-dependent manner. CONCLUSION: MVs play a role in transferring substances from Gram-positive to Gram-negative bacteria, shown by the release of MVs from RC85-T that were able to protect ß-lactam-susceptible bacteria from ß-lactam antibiotics. SIGNIFICANCE AND IMPACT OF STUDY: MVs are involved in the emergence of antibiotic-resistant strains in a mixed bacterial culture, helping us to understand how the spread of multidrug-resistant bacteria could be reduced.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/metabolismo , Farmacorresistência Bacteriana Múltipla , Escherichia coli , Testes de Sensibilidade Microbiana , Staphylococcus aureus
4.
Vaccines (Basel) ; 9(5)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068522

RESUMO

Viral hemorrhagic septicemia (VHS), caused by viral hemorrhagic septicemia virus (VHSV), is a viral disease affecting teleosts, and is the major cause of virus-related deaths in olive flounder (Paralichthys olivaceus). Research has focused on ways to control VHS, and recently, the use of polyinosinic-polycytidylic acid poly (I:C)-potentiated vaccination has been investigated, whereby fish are injected with poly (I:C) and then with live pathogenic virus, resulting in a significant decrease in VHSV-related mortality. T cell responses were investigated in the present study after vaccinating olive flounder with poly (I:C)-potentiated vaccination to understand the ability of poly (I:C) to induce T cell immunity. Stimulation of T cell responses with the poly (I:C)-potentiated vaccination was confirmed by examining levels of CD3+ T cells, CD4-1+ T cells and CD4-2+ T cells. Higher levels of CD4-2+ T cells were found in vaccinated fish than CD4-1+ T cells, believed to result from a synergistic effect between poly (I:C) administration and pathogenic VHSV immunization. More importantly, the role of CD4-2+ T cells in the antiviral response was clearly evident. The results of this study suggest that the outstanding protection obtained with the poly (I:C)-potentiated vaccination is due to the robust immune response initiated by the CD4-2+ T cells.

5.
Vaccines (Basel) ; 9(1)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467013

RESUMO

The causative agent of acute hepatopancreatic necrosis disease (AHPND) is the bacterium, Vibrio parahaemolyticus, which secretes toxins into the gastrointestinal tract of its host. Vibrio parahaemolyticus toxins A and B (PirAvp/PirBvp) have been implicated in the pathogenesis of this disease, and are, therefore, the focus of studies developing treatments for AHPND. We previously produced recombinant antibodies based on the hagfish variable lymphocyte receptor B (VLRB) capable of neutralizing some viruses, suggesting that this type of antibody may have a potential application for treatment of AHPND. Here, recombinant PirAvp/PirBvp, produced using a bacterial expression system, were used as antigens to screen a hagfish VLRB cDNA library to obtain PirAvp/PirBvp-specific antibodies. A cell line secreting these antibodies was established by screening and cloning the DNA extracted from hagfish B cells. Supernatants collected from cells secreting the PirAvp/PirBvp antibodies were collected and concentrated, and used to passively immunize shrimp to neutralize the toxins PirAvp or PirBvp associated with AHPND. Briefly, 10 µg of PirAvp and PirBvp antibodies, 7C12 and 9G10, respectively, were mixed with the shrimp feed, and fed to shrimp for three days consecutive days prior to experimentally infecting the shrimp with V. parahaemolyticus (containing toxins A and B), and resulting mortalities recorded for six days. Results showed significantly higher level of survival in shrimp fed with the PirBvp-9G10 antibody (60%) compared to the group fed the PirAvp-7C12 antibody (3%) and the control group (0%). This suggests that VLRB antibodies may be a suitable alternative to immunoglobulin-based antibodies, as passive immunization treatments for effective management of AHPND outbreaks within shrimp farms.

6.
Sci Rep ; 10(1): 21066, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273518

RESUMO

Extracellular vesicles (EVs) containing specific cargo molecules from the cell of origin are naturally secreted from bacteria. EVs play significant roles in protecting the bacterium, which can contribute to their survival in the presence of antibiotics. Herein, we isolated EVs from methicillin-resistant Staphylococcus aureus (MRSA) in an environment with or without stressor by adding ampicillin at a lower concentration than the minimum inhibitory concentration (MIC). We investigated whether EVs from MRSA under stress condition or normal condition could defend susceptible bacteria in the presence of several ß-lactam antibiotics, and directly degrade the antibiotics. A comparative proteomic approach was carried out in both types of EVs to investigate ß-lactam resistant determinants. The secretion of EVs from MRSA under antibiotic stressed conditions was increased by 22.4-fold compared with that of EVs without stress. Proteins related to the degradation of ß-lactam antibiotics were abundant in EVs released from the stressed condition. Taken together, the present data reveal that EVs from MRSA play a crucial role in the survival of ß-lactam susceptible bacteria by acting as the first line of defense against ß-lactam antibiotics, and antibiotic stress leads to release EVs with high defense activity.


Assuntos
Ampicilina/farmacologia , Resistência Microbiana a Medicamentos , Vesículas Extracelulares/metabolismo , Staphylococcus aureus Resistente à Meticilina/fisiologia , Estresse Fisiológico , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Sistema Livre de Células , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/ultraestrutura , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estresse Fisiológico/efeitos dos fármacos , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo , beta-Lactamas/farmacologia
7.
Int J Mol Sci ; 21(11)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545330

RESUMO

The presence of CD4 T lymphocytes has been described for several teleost species, while many of the main T cell subsets have not been characterized at a cellular level, because of a lack of suitable tools for their identification, e.g., monoclonal antibodies (mAbs) against cell markers. We previously described the tissue distribution and immune response related to CD3ε and CD4-1 T cells in olive flounder (Paralichthys oliveceus) in response to a viral infection. In the present study, we successfully produce an mAb against CD4-2 T lymphocytes from olive flounder and confirmed its specificity using immuno-blotting, immunofluorescence staining, flow cytometry analysis and reverse transcription polymerase chain reaction (RT-PCR). Using these mAbs, we were able to demonstrate that the CD3ε T cell populations contain both types of CD4+ cells, with the majority of the CD4 T cell subpopulations being CD4-1+/CD4-2+ cells, determined using two-color flow cytometry analysis. We also examined the functional activity of the CD4-1 and CD4-2 cells in vivo in response to a viral infection, with the numbers of both types of CD4 T cells increasing significantly during the virus infection. Collectively, these findings suggest that the CD4 T lymphocytes in olive flounder are equivalent to the helper T cells in mammals in terms of their properties and function, and it is the CD4-2 T lymphocytes rather than the CD4-1 T cells that play an important role in the Th1 immune response against viral infections in olive flounder.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Doenças dos Peixes/virologia , Linguado/virologia , Infecções por Vírus de RNA/imunologia , Animais , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Antígenos CD4/genética , Antígenos CD4/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Linguado/imunologia , Citometria de Fluxo/métodos , Interações Hospedeiro-Patógeno , Nodaviridae/patogenicidade , Infecções por Vírus de RNA/veterinária , RNA Mensageiro , Transcriptoma
8.
Int J Mol Sci ; 21(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316670

RESUMO

Gram-negative bacteria have an outer membrane inhibiting the entry of antibiotics. Porins, found within the outer membrane, are involved in regulating the permeability of ß-lactam antibiotics. ß-lactamases are enzymes that are able to inactivate the antibacterial properties of ß-lactam antibiotics. Interestingly, porins and ß-lactamase are found in outer membrane vesicles (OMVs) of ß-lactam-resistant Escherichia coli and may be involved in the survival of susceptible strains of E. coli in the presence of antibiotics, through the hydrolysis of the ß-lactam antibiotic. In this study, OMVs isolated from ß-lactam-resistant E. coli and from mutants, lacking porin or ß-lactamase, were evaluated to establish if the porins or ß-lactamase in OMVs were involved in the degradation of ß-lactam antibiotics. OMVs isolated from E. coli deficient in ß-lactamase did not show any degradation ability against ß-lactam antibiotics, while OMVs lacking OmpC or OmpF showed significantly lower levels of hydrolyzing activity than OMVs from parent E. coli. These data reveal an important role of OMVs in bacterial defense mechanisms demonstrating that the OmpC and OmpF proteins allow permeation of ß-lactam antibiotics into the lumen of OMVs, and antibiotics that enter the OMVs can be degraded by ß-lactamase.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Porinas/genética , beta-Lactamases/genética , beta-Lactamas/química , Membrana Externa Bacteriana/metabolismo , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidrólise , Testes de Sensibilidade Microbiana , Mutação , Porinas/metabolismo , beta-Lactamases/metabolismo , beta-Lactamas/farmacologia
9.
J Immunol ; 204(3): 718-725, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31836656

RESUMO

The variable lymphocyte receptor (VLR) mediates the humoral immune response in jawless vertebrates, including lamprey (Petromyzon marinus) and hagfish (Eptatretus burgeri). Hagfish VLRBs are composed of leucine-rich repeat (LRR) modules, conjugated with a superhydrophobic C-terminal tail, which contributes to low levels of expression in recombinant protein technology. In this study, we screened Ag-specific VLRBs from hagfish immunized with nervous necrosis virus (NNV). The artificially multimerized form of VLRB was constructed using a mammalian expression system. To enhance the level of expression of the Ag-specific VLRB, mutagenesis of the VLRB was achieved in vitro through domain swapping of the LRR C-terminal cap and variable LRR module. The mutant VLRB obtained, with high expression and secretion levels, was able to specifically recognize purified and progeny NNV, and the Ag binding ability of this mutant was increased by at least 250-fold to that of the nonmutant VLRB. Furthermore, preincubation of the Ag-specific VLRB with NNV reduced the infectivity of NNV in E11 cells in vitro, and in vivo experiment. Our results suggest that the newly developed Ag-specific VLRB has the potential to be used as diagnostic and therapeutic reagents for NNV infections in fish.


Assuntos
Doenças dos Peixes/imunologia , Feiticeiras (Peixe)/imunologia , Linfócitos/imunologia , Nodaviridae/fisiologia , Infecções por Vírus de RNA/imunologia , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Linhagem Celular , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Imunização , Lampreias , Mutação/genética , Petromyzon , Receptores de Antígenos/genética , Receptores de Antígenos/metabolismo
10.
Dev Comp Immunol ; 103: 103518, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31605716

RESUMO

The occurrence of CD4 helper T cells has already been established for a number of teleost species, though, it has not been possible to analyze these responses at a cellular level due to a large lack of appropriate monoclonal antibodies (mAbs). In the present study, we produced a mAb against olive flounder (Paralichthys olivaceus) CD4-1 lymphocyte to investigate the functional activity of the cells to improve our understanding of the T cell response in this species. This mAb is specifically able to detect CD4-1 lymphocytes in olive flounder proved by immunofluorescence staining and RT-PCR analysis. In flow cytometry analysis, the number of CD4-1-positive lymphocytes was observed to gradually increase from 3 days post infection (dpi) and then reach peak at 7 dpi against two viruses challenge. As a conclusion, both the basic properties of CD4-1 T cells and its response to viral infections in olive flounder are very similar to the helper T cells in terrestrial animals.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Doenças dos Peixes/imunologia , Linguado/imunologia , Septicemia Hemorrágica Viral/imunologia , Infecções por Vírus de RNA/veterinária , Animais , Anticorpos Monoclonais , Doenças dos Peixes/virologia , Linguado/virologia , Nodaviridae , Novirhabdovirus , Infecções por Vírus de RNA/imunologia
11.
Front Immunol ; 10: 906, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31080451

RESUMO

Teleost fish, as with other vertebrates, rely on their innate immune system as a first line of defense against invading pathogens. A very important characteristic of the innate immune response is its ability to recognize conserved molecular structures, such as viral dsRNA and ssRNA. Mda5 is one of the three pattern recognition receptors (PRRs) that recognize cytoplasmic viral ligands. Teleost Mda5 is widely conserved among several fish species and possesses the same structural domains as those seen in their mammalian counterparts. Fish Mda5 has been shown to be capable of initiating an inflammatory response both in vitro (in different fish cell lines) and in vivo using synthetic viral analogs or virus. The interferon (IFN) pathway is triggered as a result of Mda5 activation, leading to the expression of type I IFNs, IFN- stimulated genes and pro-inflammatory cytokines. Although it is known that Mda5 acts as a receptor for virally-produced ligands, it has been shown more recently that it can also initiate an immune response against bacterial challenges. This review discusses recent advances in the characterization of teleost Mda5 and its potential role in antiviral and antibacterial immunity in teleost fish.


Assuntos
Bactérias/imunologia , RNA Helicases DEAD-box/imunologia , Imunidade Inata/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Vírus/imunologia , Proteínas de Peixe-Zebra/imunologia , Animais , Carpas , RNA Helicases DEAD-box/genética , Peixes , Interferons/imunologia , Percas , RNA Helicases/metabolismo , Transdução de Sinais/imunologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
12.
J Immunol Methods ; 466: 24-31, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30611766

RESUMO

The variable lymphocyte receptor B (VLRB) of jawless vertebrates has a similar function to the antibodies produced by jawed vertebrates, and has been considered as an alternative source to mammalian antibodies for use in biological research. We developed a modified yeast display vector system (pYD8) to display recombinant hagfish VLRB proteins on the extracellular surface of yeast for the isolation of antigen-specific VLRBs. After observing an up-regulation in the VLRB response in hagfish immunized with hemagglutinin 1 of avian influenza virus H9N2 subtype (H9N2-HA1), the antigen-specific VLRBs decorated on the yeast's surface were selected by quantitative library screening through magnetic-activated cell sorting (MACS) and fluorescent-activated cell sorting (FACS). We also demonstrated a strong specificity of the antigen-specific VLRBs, when expressed as a secreted protein using a mammalian expression system. Together, our findings suggest that the pYD8 vector system could be useful for screening antigen-specific hagfish VLRBs, and the specificity of secreted VLRB may have potential for a variety of biological applications.


Assuntos
Antígenos/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Saccharomyces cerevisiae/imunologia , Animais , Linfócitos B/imunologia , Feiticeiras (Peixe) , Receptores de Antígenos de Linfócitos B/genética
13.
Mol Immunol ; 104: 54-60, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30408623

RESUMO

Lamprey, one of the living representatives of jawless vertebrates, uses variable lymphocyte receptors B (VLRB) for antigen recognition, rather than immunoglobulin (Ig) based receptors as used by higher vertebrates. The C-terminus of lamprey VLRB (LC) possess a glycosylphosphatidylinositol (GPI) signal sequence and seven cysteine residues providing dual functionality of the VLRB antibody in the form of a humoral agglutinin and cell membrane receptors. Here, we show that the LC can be either secreted or be membrane anchored as a heterologous fused protein in a multimeric form comprising of eight or ten monomeric units. Using serially truncated LC variants, we showed that the LC, in which the last three amino acid "RKR" were deleted, referred to as LC7, was the most suitable domain for multimeric construction, whereas, the intact LC is more tailored for applications involving membrane anchorage. We show that an antibody specific for viral hemorrhagic septicemia virus (VHSV) (VLR43), displayed on HEK-293F cells using a PiggyBac (PB) transposase system, exhibited a dose-dependent reaction with its antigen, verifying that the LC can be applied in antibody display technology. Therefore, the present report provides valuable insight into the structure of the lamprey VLRB and highlights its potential use as a novel fusion partner for multimerization and membrane anchorage of chimeric proteins.


Assuntos
Proteínas de Peixes , Lampreias , Multimerização Proteica , Receptores de Superfície Celular , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Células HEK293 , Humanos , Lampreias/crescimento & desenvolvimento , Lampreias/imunologia , Multimerização Proteica/genética , Multimerização Proteica/imunologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia
14.
J Immunol ; 201(10): 3119-3128, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30333123

RESUMO

The variable lymphocyte receptor (VLR) B of jawless vertebrates functions as a secreted Ab of jawed vertebrates and has emerged as an alternative Ab with a single polypeptide chain. After observing an upregulated VLRB response in hagfish immunized with avian influenza virus (AIV) subtype H9N2, we screened AIV H9N2-specific VLRB using a mammalian expression system. To improve the binding avidity of the Ag-specific VLRB to the Ag, we enabled multimerization of the VLRB by conjugating it with C-terminal domain of human C4b-binding protein. To dramatically enhance the expression and secretion of the Ag-specific VLRB, we introduced a glycine-serine linker and the murine Ig κ leader sequence. The practical use of the Ag-specific VLRB was also demonstrated through various immunoassays, detected by anti-VLRB Ab (11G5). Finally, we found that the Ag-specific VLRB decreased the infectivity of AIV H9N2. Together, our findings suggest that the generated Ag-specific VLRB could be used for various immunoapplications.


Assuntos
Técnicas Imunológicas , Vírus da Influenza A Subtipo H9N2/imunologia , Engenharia de Proteínas/métodos , Receptores de Antígenos/genética , Receptores de Antígenos/imunologia , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Feiticeiras (Peixe) , Humanos , Camundongos
15.
J Immunol Methods ; 462: 48-53, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30121197

RESUMO

Monomeric variable lymphocyte receptor B (VLRB) is one of the smallest binding scaffold (20-25 kDa) from jawless vertebrates, hagfish and lamprey. This relatively new class of binding scaffold has various advantages: i) it has a single peptide composition, amenable to molecular engineering for enhancing its stability and affinity; ii) it has a small size, contributing better tissue penetration and easier production using microorganism expression system. Monomeric arVLRB142, which can specifically bind to the glycoprotein of viral hemorrhagic septicemia virus (VHSV), was expressed in Pichia pastoris. High quantity recombinant monomeric arVLRB142 (rVLR142mono) was purified from 100 ml of culture with a resulting yield of 2.6 ±1.3 mg of target protein. Functional studies revealed that the purified rVLR142mono can specifically recognize low levels of the target antigen (recombinant glycoprotein) (i.e. as low as 0.1 nM), but also the native glycoprotein of VHSV. The expressed rVLR142mono exhibited high levels of stability and it retained it binding capacity over broad temperature (4 °C ~ 60 °C) and pH ranges (pH 1.5-12.5). We developed an effective expression system for mass production of monomeric VLRB based on P. pastoris. The recombinant protein that was obtained offers promising binding avidity and biophysical stability and its potential use in various biotechnological applications.


Assuntos
Proteínas de Peixes , Expressão Gênica , Glicoproteínas , Lampreias , Novirhabdovirus/imunologia , Receptores de Antígenos de Linfócitos B , Animais , Proteínas de Peixes/biossíntese , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Glicoproteínas/biossíntese , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/imunologia , Lampreias/genética , Lampreias/imunologia , Pichia/genética , Pichia/imunologia , Receptores de Antígenos de Linfócitos B/biossíntese , Receptores de Antígenos de Linfócitos B/química , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
16.
Sci Rep ; 8(1): 10801, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018426

RESUMO

In hagfish and lampreys, two representative jawless vertebrates, the humoral immunity is directly mediated by variable lymphocyte receptors B (VLRBs). Both monomeric VLRBs are structurally and functionally similar, but their C-terminal tails differ: lamprey VLRB has a Cys-rich tail that forms disulfide-linked pentamers of dimers, contributing to its multivalency, whereas hagfish VLRB has a superhydrophobic tail of unknown structure. Here, we reveal that VLRBs obtained from hagfish plasma have a globular-shaped multimerized form (approximately 0.6 to 1.7 MDa) that is generated by hydrophobic clustering instead of covalent linkage. Electron microscopy (EM) and single-particle analysis showed that the multimerized VLRBs form globular-shaped clusters with an average diameter of 28.7 ± 2.2 nm. The presence of VLRBs in the complex was confirmed by immune-EM analysis using an anti-VLRB antibody. Furthermore, the hydrophobic hagfish C-terminus (HC) was capable of triggering multimerization and directing the cellular surface localization via a glycophosphatidylinositol linkage. Our results strongly suggest that the hagfish VLRB forms a previously unknown globular-shaped antibody. This novel identification of a structurally unusual VLRB complex may suggest that the adaptive immune system of hagfish differs from that of lamprey.


Assuntos
Anticorpos/metabolismo , Feiticeiras (Peixe)/metabolismo , Imunoglobulinas/metabolismo , Linfócitos/metabolismo , Animais , Anticorpos/química , Anticorpos/genética , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Membrana Celular/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Imunoglobulinas/química , Imunoglobulinas/genética , Lampreias/metabolismo , Linfócitos/citologia , Microscopia Eletrônica de Transmissão , Multimerização Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
17.
Mol Immunol ; 99: 30-38, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29679865

RESUMO

Variable lymphocyte receptors B (VLRBs) are non-immunoglobulin components of the humoral immune system in jawless vertebrates including hagfish (Eptatretus burgeri) and lamprey (Petromyzon marinus). Hagfish VLRBs consist of leucine rich repeat (LRR) modules with a superhydrophobic C-terminal tail, the latter of which leads to extremely low expression levels in recombinant protein technology. Here, we present an artificially oligomerized VLRB (arVLRB) that conjugates via the C4bp oligomerization domain derived from human C4b-binding protein (hC4bp) rather than the superhydrophobic tail. The resulting arVLRB had a tightly multimerized form with seven monomeric VLRB arms and showed high expression and secretion levels in a mammalian expression system. To isolate antigen-specific arVLRB, we constructed large VLRB libraries from hagfish immunized with the fish pathogen, viral hemorrhagic septicemia virus (VHSV). The selected arVLRBs were found to recognize various types of antigens, including the recombinant target protein, purified viruses, and progeny viruses, with high antigen binding abilities and specificities. We also performed in vitro affinity maturation of the arVLRBs through LRRCT mutagenesis, and found that this enhanced their antigen-binding properties by at least 125-fold. Our epitope mapping analysis revealed that 37DWDTPL42, which is located in a region conserved among the glycoproteins of all VHSV isolates, is the recognition epitope of the arVLRBs. Thus, our newly developed arVLRB could prove useful in the development of universal diagnostic tools and/or therapeutic agents for the virus. Together, our novel findings provide valuable insights into hagfish VLRB and its potential use as a novel alternative to conventional antibodies for biotechnological applications.


Assuntos
Glicoproteínas/imunologia , Feiticeiras (Peixe)/imunologia , Septicemia Hemorrágica Viral/imunologia , Linfócitos/imunologia , Novirhabdovirus/imunologia , Imunidade Adaptativa/imunologia , Animais , Anticorpos/imunologia , Proteína de Ligação ao Complemento C4b/imunologia , Epitopos/imunologia , Rearranjo Gênico/imunologia , Humanos , Imunização/métodos , Mamíferos/imunologia , Petromyzon/imunologia
18.
Sci Rep ; 8(1): 5402, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29599474

RESUMO

Outer membrane vesicles (OMVs) containing various bacterial compounds are released from mainly gram-negative bacteria. Secreted OMVs play important roles in the ability of a bacterium to defend itself, and thus contribute to the survival of bacteria in a community. In this study, we collected OMVs from ß-lactam antibiotic-resistant Escherichia coli established by conjugation assay and the parental ß-lactam antibiotic-susceptible strain, and performed comparative proteomic analysis to examine whether these OMVs carried ß-lactam-resistant compounds. We also investigated whether both types of OMVs could protect susceptible cells from ß-lactam-induced death and/or directly degrade ß-lactam antibiotics. Several proteins that can be involved in degrading ß-lactam antibiotics were more abundant in OMVs from ß-lactam-resistant E. coli, and thus OMVs from ß-lactam resistant E. coli could directly and dose-dependently degrade ß-lactam antibiotics and fully rescue ß-lactam-susceptible E. coli and other bacterial species from ß-lactam antibiotic-induced growth inhibition. Taken together, present study demonstrate that OMVs from ß-lactam-resistant E. coli play important roles in survival of antibiotic susceptible bacteria against ß-lactam antibiotics. This finding may pave the way for new efforts to combat the current global spread of antibiotic resistances, which is considered to be a significant public health threat.


Assuntos
Farmacorresistência Bacteriana , Escherichia coli/metabolismo , beta-Lactamas/metabolismo , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/análise , Proteínas da Membrana Bacteriana Externa/metabolismo , Cromatografia Líquida de Alta Pressão , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Testes de Sensibilidade Microbiana , Proteínas Periplásmicas/análise , Proteínas Periplásmicas/metabolismo , Espectrometria de Massas por Ionização por Electrospray
19.
Fish Shellfish Immunol ; 65: 179-185, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28433716

RESUMO

The T cell receptor (TCR) is the binding site of antigen and is responsible for specifically activating the adaptive immune response. CD3, an essential component of the CD3-TCR complex, is known to be composed of γδ and ε chains in teleost. However, there are few monoclonal antibodies (mAb) available to identify these molecules on T cells, so we aimed to produce a mAb against CD3ε to improve our understanding of T cell immune response in olive flounder (Paralichthys olivaceus). CD3ε recombinant protein was expressed in yeast, the expression of which was confirmed by SDS-PAGE, MALDI-TOF/TOF MS and Western blot analysis. A CD3ε-specific mAb 4B2 was selected, the specificity of which was examined by confocal microscopy, flow cytometry and RT-PCR, and the mAb was subsequently used to examine the CD3ε lymphocyte population in several different immune organs, with relatively high percentages of these cells seen in trunk-kidney and spleen, while lower percentages were seen in the liver and peripheral blood of olive flounder. During a viral hemorrhagic septicemia virus (VHSV) infection in olive flounder, the number of CD3ε lymphocytes was seen to gradually increase in the liver, spleen and trunk-kidney of infected fish until 7 days post infection (dpi). In peripheral blood, on the other hand, the increase in CD3ε lymphocyte numbers peaked by 3 dpi. These results suggest that CD3ε lymphocytes might be involved in the immune response against VHSV.


Assuntos
Complexo CD3/imunologia , Linguados , Septicemia Hemorrágica Viral/imunologia , Leucócitos/imunologia , Novirhabdovirus/fisiologia , Animais , Anticorpos Monoclonais/imunologia , Eletroforese em Gel de Poliacrilamida , Septicemia Hemorrágica Viral/virologia , Imunidade Inata , Especificidade de Órgãos
20.
Fish Shellfish Immunol ; 62: 356-365, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28126619

RESUMO

The use of molecular adjuvants to improve the immunogenicity of DNA vaccines has been thoroughly studied in recent years. Glycoprotein (G)-based DNA vaccines had been proven to be effective in combating infection against Rhabdovirus (especially infectious hematopoietic necrosis virus, IHNV) in salmonids. DDX41 is a helicase known to induce antiviral and inflammatory responses by inducing a type I IFN innate immune response. To gain more information regarding G-based DNA vaccines in olive flounder (Paralicthys olivaceus), we tried to develop a more efficient G-based DNA vaccine by adding a molecular adjuvant, DDX41. We designed a DNA vaccine in which the VHSV glycoprotein (G-protein) and DDX41 were driven by the EF-1α and CMV promoters, respectively. Olive flounders were intramuscularly immunized with 1 µg of plasmids encoding the G-based DNA vaccine alone (pEF-G), the molecular adjuvant alone (pEF-D), or the vaccine-adjuvant construct (pEF-GD). At two different time points, 15 and 30 days later, the fish were intraperitoneally infected with VHSV (100 µL; 1 × 106 TCID50/mL). Our assays revealed that the plasmid constructs showed up-regulated expression of IFN-1 and its associated genes at day 3 post-vaccination in both kidney and spleen samples. Specifically, pEF-GD showed statistically higher expression of immune response genes than pEF-G and pEF-D treated group (p < 0.05/p < 0.001). After VHSV challenge, the fish group treated with pEF-GD showed higher survival rate than the pEF-G treated group, though difference was not statistically significant in the 15 dpv challenged group however in the 30 dpv challenged group, the difference was statistically significant (p < 0.05). Together, these results clearly demonstrate that DDX41 is an effective adjuvant for the G-based DNA vaccine in olive flounder. Our novel findings could facilitate the development of more effective DNA vaccines for the aquaculture industry.


Assuntos
Adjuvantes Imunológicos/farmacologia , RNA Helicases DEAD-box/farmacologia , Proteínas de Peixes/farmacologia , Linguados , Septicemia Hemorrágica Viral/prevenção & controle , Novirhabdovirus/imunologia , Proteínas Virais/imunologia , Vacinas Virais/imunologia , Adjuvantes Imunológicos/metabolismo , Animais , Glicoproteínas/imunologia , Septicemia Hemorrágica Viral/virologia , Imunidade/efeitos dos fármacos , Vacinas de DNA/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...