Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 33(12): 2001-11, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20573048

RESUMO

Under elevated atmospheric CO(2) concentrations, soil carbon (C) inputs are typically enhanced, suggesting larger soil C sequestration potential. However, soil C losses also increase and progressive nitrogen (N) limitation to plant growth may reduce the CO(2) effect on soil C inputs with time. We compiled a data set from 131 manipulation experiments, and used meta-analysis to test the hypotheses that: (1) elevated atmospheric CO(2) stimulates soil C inputs more than C losses, resulting in increasing soil C stocks; and (2) that these responses are modulated by N. Our results confirm that elevated CO(2) induces a C allocation shift towards below-ground biomass compartments. However, the increased soil C inputs were offset by increased heterotrophic respiration (Rh), such that soil C content was not affected by elevated CO(2). Soil N concentration strongly interacted with CO(2) fumigation: the effect of elevated CO(2) on fine root biomass and -production and on microbial activity increased with increasing soil N concentration, while the effect on soil C content decreased with increasing soil N concentration. These results suggest that both plant growth and microbial activity responses to elevated CO(2) are modulated by N availability, and that it is essential to account for soil N concentration in C cycling analyses.


Assuntos
Atmosfera , Ciclo do Carbono , Dióxido de Carbono , Ciclo do Nitrogênio , Solo/análise , Árvores/crescimento & desenvolvimento , Biomassa , Fertilizantes
2.
Tree Physiol ; 21(2-3): 145-52, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11303645

RESUMO

Respiration of the rhizosphere in a beech (Fagus sylvatica L.) forest was calculated by subtracting microbial respiration associated with organic matter decomposition from daily mean soil CO2 efflux. We used a semi-mechanistic soil organic matter model to simulate microbial respiration, which was validated against "no roots" data from trenched subplots. Rhizosphere respiration exhibited pronounced seasonal variation from 0.2 g C m(-2) day(-1) in January to 2.3 g C m(-2) day(-1) in July. Rhizosphere respiration accounted for 30 to 60% of total soil CO2 efflux, with an annual mean of 52%. The high Q10 (3.9) for in situ rhizosphere respiration was ascribed to the confounding effects of temperature and changes in root biomass and root and shoot activities. When data were normalized to the same soil temperature based on a physiologically relevant Q10 value of 2.2, the lowest values of temperature-normalized rhizosphere respiration were observed from January to March, whereas the highest value was observed in early July when fine root growth is thought to be maximal.


Assuntos
Fagus/fisiologia , Raízes de Plantas/fisiologia , Solo , Árvores/fisiologia , Dióxido de Carbono/metabolismo , Dióxido de Carbono/fisiologia , Fagus/metabolismo , França , Raízes de Plantas/metabolismo , Estações do Ano , Árvores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...