Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 12(7)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37513706

RESUMO

Madagascar is home to an extraordinary diversity of endemic mammals hosting several zoonotic pathogens. Although the African origin of Malagasy mammals has been addressed for a number of volant and terrestrial taxa, the origin of their hosted zoonotic pathogens is currently unknown. Using bats and Leptospira infections as a model system, we tested whether Malagasy mammal hosts acquired these infections on the island following colonization events, or alternatively brought these bacteria from continental Africa. We first described the genetic diversity of pathogenic Leptospira infecting bats from Mozambique and then tested through analyses of molecular variance (AMOVA) whether the genetic diversity of Leptospira hosted by bats from Mozambique, Madagascar and Comoros is structured by geography or by their host phylogeny. This study reveals a wide diversity of Leptospira lineages shed by bats from Mozambique. AMOVA strongly supports that the diversity of Leptospira sequences obtained from bats sampled in Mozambique, Madagascar, and Comoros is structured according to bat phylogeny. Presented data show that a number of Leptospira lineages detected in bat congeners from continental Africa and Madagascar are imbedded within monophyletic clades, strongly suggesting that bat colonists have indeed originally crossed the Mozambique Channel while infected with pathogenic Leptospira.

2.
Epidemiol Infect ; 151: e47, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36750225

RESUMO

Infection dynamics in vertebrates are driven by biological and ecological processes. For bats, population structure and reproductive cycles have major effects on RNA virus transmission. On Reunion Island, previous studies have shown that parturition of pregnant females and aggregation of juvenile Reunion free-tailed bats (Mormopterus francoismoutoui) are associated with major increase in the prevalence of bats shedding RNA viruses. The synchronicity of such shedding pulses, however, is yet to be assessed between viruses but also maternity colonies. Based on 3422 fresh faeces collected every 2-5 weeks during four consecutive birthing seasons, we report the prevalence of bats shedding astroviruses (AstVs), coronaviruses (CoVs) and paramyxoviruses (PMVs) in two maternity colonies on Reunion Island. We found that the proportion of bats shedding viruses is highly influenced by sampling collection periods, and therefore by the evolution of the population age structure. We highlight that virus shedding patterns are consistent among years and colonies for CoVs and to a lesser extent for PMVs, but not for AstVs. We also report that 1% of bats harbour co-infections, with two but not three of the viruses, and most co-infections were due to CoVs and PMVs.


Assuntos
Quirópteros , Coinfecção , Infecções por Coronavirus , Coronavirus , Humanos , Gravidez , Animais , Feminino , Eliminação de Partículas Virais , Filogenia , Infecções por Coronavirus/epidemiologia
3.
Ecol Evol ; 13(2): e9814, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36789336

RESUMO

Although island endemic bats are a source of considerable conservation concerns, their biology remains poorly known. Here, we studied the phenology and roosting behavior of a tropical island endemic species: the Reunion free-tailed bat (Mormopterus francoismoutoui). This widespread and abundant species occupies various natural and anthropogenic environments such as caves and buildings. We set up fine-scale monitoring of 19 roosts over 27 months in Reunion Island and analyzed roost size and composition, sexual and age-associated segregation of individuals, as well as the reproductive phenology and body condition of individuals. Based on extensive data collected from 6721 individuals, we revealed a highly dynamic roosting behavior, with marked seasonal sex-ratio variation, linked to distinct patterns of sexual aggregation among roosts. Despite the widespread presence of pregnant females all over the island, parturition was localized in a few roosts, and flying juveniles dispersed rapidly toward all studied roosts. Our data also suggested a 7-month delay between mating and pregnancy, highlighting a likely long interruption of the reproductive cycle in this tropical bat. Altogether, our results suggest a complex social organization in the Reunion free-tailed bat, with important sex-specific seasonal and spatial movements, including the possibility of altitudinal migration. Bat tracking and genetic studies would provide additional insights into the behavioral strategies that shape the biology of this enigmatic bat species. The fine-scale spatiotemporal data revealed by our study will serve to the delineation of effective conservation plans, especially in the context of growing urbanization and agriculture expansion in Reunion Island.

4.
Emerg Infect Dis ; 28(12): 2583-2585, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36418002

RESUMO

We detected Bombali ebolavirus RNA in 3 free-tailed bats (Mops condylurus, Molossidae) in Mozambique. Sequencing of the large protein gene revealed 98% identity with viruses previously detected in Sierra Leone, Kenya, and Guinea. Our findings further support the suspected role of Mops condylurus bats in maintaining Bombali ebolavirus.


Assuntos
Quirópteros , Ebolavirus , Animais , Ebolavirus/genética , Moçambique/epidemiologia , Guiné/epidemiologia , Quênia
5.
R Soc Open Sci ; 9(2): 211600, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35154796

RESUMO

Anticipating cross-species transmission of zoonotic diseases requires an understanding of pathogen infection dynamics within natural reservoir hosts. Although bats might be a source of coronaviruses (CoVs) for humans, the drivers of infection dynamics in bat populations have received limited attention. We conducted a fine-scale 2-year longitudinal study of CoV infection dynamics in the largest colony of Reunion free-tailed bats (Mormopterus francoismoutoui), a tropical insectivorous species. Real-time PCR screening of 1080 fresh individual faeces samples collected during the two consecutive years revealed an extreme variation of the detection rate of bats shedding viruses over the birthing season (from 0% to 80%). Shedding pulses were repeatedly observed and occurred both during late pregnancy and within two months after parturition. An additional shedding pulse at the end of the second year suggests some inter-annual variations. We also detected viral RNA in bat guano up to three months after bats had left the cave. Our results highlight the importance of fine-scale longitudinal studies to capture the rapid change of bat CoV infection over months, and that CoV shedding pulses in bats may increase spillover risk.

6.
Virol J ; 18(1): 205, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34641936

RESUMO

Co-infections have a key role in virus transmission in wild reservoir hosts. We investigated the simultaneous presence of astroviruses, coronaviruses, and paramyxoviruses in bats from Madagascar, Mayotte, Mozambique, and Reunion Island. A total of 871 samples from 28 bat species representing 8 families were tested by polymerase chain reactions (PCRs) targeting the RNA-dependent RNA-polymerase genes. Overall, 2.4% of bats tested positive for the presence of at least two viruses, only on Madagascar and in Mozambique. Significant variation in the proportion of co-infections was detected among bat species, and some combinations of co-infection were more common than others. Our findings support that co-infections of the three targeted viruses occur in bats in the western Indian Ocean region, although further studies are needed to assess their epidemiological consequences.


Assuntos
Infecções por Astroviridae/epidemiologia , Quirópteros/virologia , Coinfecção/epidemiologia , Infecções por Coronavirus/epidemiologia , Infecções por Paramyxoviridae/epidemiologia , Animais , Madagáscar , Moçambique , Reunião
7.
PLoS Negl Trop Dis ; 15(2): e0009029, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33600454

RESUMO

Murine typhus is a flea-borne zoonotic disease that has been recently reported on Reunion Island, an oceanic volcanic island located in the Indian Ocean. Five years of survey implemented by the regional public health services have highlighted a strong temporal and spatial structure of the disease in humans, with cases mainly reported during the humid season and restricted to the dry southern and western portions of the island. We explored the environmental component of this zoonosis in an attempt to decipher the drivers of disease transmission. To do so, we used data from a previously published study (599 small mammals and 175 Xenopsylla fleas from 29 sampling sites) in order to model the spatial distribution of rat fleas throughout the island. In addition, we carried out a longitudinal sampling of rats and their ectoparasites over a 12 months period in six study sites (564 rats and 496 Xenopsylla fleas) in order to model the temporal dynamics of flea infestation of rats. Generalized Linear Models and Support Vector Machine classifiers were developed to model the Xenopsylla Genus Flea Index (GFI) from climatic and environmental variables. Results showed that the spatial distribution and the temporal dynamics of fleas, estimated through the GFI variations, are both strongly controlled by abiotic factors: rainfall, temperature and land cover. The models allowed linking flea abundance trends with murine typhus incidence rates. Flea infestation in rats peaked at the end of the dry season, corresponding to hot and dry conditions, before dropping sharply. This peak of maximal flea abundance preceded the annual peak of human murine typhus cases by a few weeks. Altogether, presented data raise novel questions regarding the ecology of rat fleas while developed models contribute to the design of control measures adapted to each micro region of the island with the aim of lowering the incidence of flea-borne diseases.


Assuntos
Infestações por Pulgas/veterinária , Ratos/parasitologia , Tifo Endêmico Transmitido por Pulgas/epidemiologia , Xenopsylla , Animais , Ecossistema , Infestações por Pulgas/epidemiologia , Humanos , Incidência , Mamíferos/parasitologia , Reunião/epidemiologia , Doenças dos Roedores/epidemiologia , Doenças dos Roedores/parasitologia , Estações do Ano , Análise Espaço-Temporal , Tifo Endêmico Transmitido por Pulgas/transmissão
8.
Sci Rep ; 10(1): 6873, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32327721

RESUMO

Bats provide key ecosystem services such as crop pest regulation, pollination, seed dispersal, and soil fertilization. Bats are also major hosts for biological agents responsible for zoonoses, such as coronaviruses (CoVs). The islands of the Western Indian Ocean are identified as a major biodiversity hotspot, with more than 50 bat species. In this study, we tested 1,013 bats belonging to 36 species from Mozambique, Madagascar, Mauritius, Mayotte, Reunion Island and Seychelles, based on molecular screening and partial sequencing of the RNA-dependent RNA polymerase gene. In total, 88 bats (8.7%) tested positive for coronaviruses, with higher prevalence in Mozambican bats (20.5% ± 4.9%) as compared to those sampled on islands (4.5% ± 1.5%). Phylogenetic analyses revealed a large diversity of α- and ß-CoVs and a strong signal of co-evolution between CoVs and their bat host species, with limited evidence for host-switching, except for bat species sharing day roost sites. These results highlight that strong variation between islands does exist and is associated with the composition of the bat species community on each island. Future studies should investigate whether CoVs detected in these bats have a potential for spillover in other hosts.


Assuntos
Alphacoronavirus/genética , Betacoronavirus/genética , Quirópteros/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Filogenia , Zoonoses/epidemiologia , Animais , Sequência de Bases , Infecções por Coronavirus/virologia , DNA Viral/genética , Ecossistema , Evolução Molecular , Variação Genética , Especificidade de Hospedeiro , Ilhas do Oceano Índico/epidemiologia , Filogeografia/métodos , Prevalência , RNA Polimerase Dependente de RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Zoonoses/virologia
9.
PeerJ ; 7: e8036, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31844566

RESUMO

The ecology and conservation status of many island-restricted bats remain largely unexplored. The free-tailed bat Mormopterus francoismoutoui is a small insectivorous tropical bat, endemic to Reunion Island (Indian Ocean). Despite being widely distributed on the island, the fine-scale genetic structure and evolutionary ecology of M. francoismoutoui remain under-investigated, and therefore its ecology is poorly known. Here, we used Illumina paired-end sequencing to develop microsatellite markers for M. francoismoutoui, based on the genotyping of 31 individuals from distinct locations all over the island. We selected and described 12 polymorphic microsatellite loci with high levels of heterozygosity, which provide novel molecular markers for future genetic population-level studies of M. francoismoutoui.

10.
Virol J ; 15(1): 104, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925396

RESUMO

Astroviruses (AstVs) are responsible for infection of a large diversity of mammalian and avian species, including bats, aquatic birds, livestock and humans. We investigated AstVs circulation in bats in Mozambique and Mayotte, a small island in the Comoros Archipelago located between east Africa and Madagascar. Biological material was collected from 338 bats and tested for the presence of the AstV RNA-dependent RNA-polymerase gene with a pan-AstV semi-nested polymerase chain reaction assay. None of the 79 samples obtained from Mayotte bats (Pteropus seychellensis comorensis and Chaerephon pusillus) tested positive; however, 20.1% of bats sampled in Mozambique shed AstVs at the time of sampling and significant interspecific variation in the proportion of positive bats was detected. Many AstVs sequences obtained from a given bat species clustered in different phylogenetic lineages, while others seem to reflect some level of host-virus association, but also with AstVs previously reported from Malagasy bats. Our findings support active circulation of a large diversity of AstVs in bats in the western Indian Ocean islands, including the southeastern African coast, and highlight the need for more detailed assessment of its risk of zoonotic transmission to human populations.


Assuntos
Doenças dos Animais/virologia , Infecções por Astroviridae/veterinária , Astroviridae , Quirópteros/virologia , Doenças dos Animais/epidemiologia , Animais , Genes Virais , Moçambique/epidemiologia , Filogenia , RNA Viral
11.
Emerg Microbes Infect ; 7(1): 57, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29615623

RESUMO

Understanding the processes driving parasite assemblages is particularly important in the context of zoonotic infectious diseases. Leptospirosis is a widespread zoonotic bacterial infection caused by pathogenic species of the genus Leptospira. Despite a wide range of animal hosts, information is still lacking on the factors shaping Leptospira diversity in wild animal communities, especially in regions, such as tropical insular ecosystems, with high host species richness and complex biogeographical patterns. Using a large dataset (34 mammal species) and a multilocus approach at a regional scale, we analyzed the role of both host species diversity and geography in Leptospira genetic diversity in terrestrial small mammals (rodents, tenrecs, and shrews) and bats from 10 different islands/countries in the western Indian Ocean (WIO) and neighboring Africa. At least four Leptospira spp. (L. interrogans, L. borgpetersenii, L. kirschneri, and L. mayottensis) and several yet-unidentified genetic clades contributed to a remarkable regional Leptospira diversity, which was generally related to the local occurrence of the host species rather than the geography. In addition, the genetic structure patterns varied between Leptospira spp., suggesting different evolutionary histories in the region, which might reflect both in situ diversification of native mammals (for L. borgpetersenii) and the more recent introduction of non-native host species (for L. interrogans). Our data also suggested that host shifts occurred between bats and rodents, but further investigations are needed to determine how host ecology may influence these events.


Assuntos
Animais Selvagens/microbiologia , Leptospira/isolamento & purificação , Leptospirose/veterinária , Mamíferos/microbiologia , África , Animais , Animais Selvagens/classificação , Ecossistema , Variação Genética , Genótipo , Ilhas do Oceano Índico , Ilhas , Leptospira/classificação , Leptospira/genética , Leptospirose/microbiologia , Mamíferos/classificação , Filogenia
12.
PLoS Negl Trop Dis ; 11(8): e0005831, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28846678

RESUMO

BACKGROUND: Leptospirosis is a bacterial zoonosis caused by pathogenic Leptospira for which rats are considered as the main reservoir. Disease incidence is higher in tropical countries, especially in insular ecosystems. Our objectives were to determine the current burden of leptospirosis in Seychelles, a country ranking first worldwide according to historical data, to establish epidemiological links between animal reservoirs and human disease, and to identify drivers of transmission. METHODS: A total of 223 patients with acute febrile symptoms of unknown origin were enrolled in a 12-months prospective study and tested for leptospirosis through real-time PCR, IgM ELISA and MAT. In addition, 739 rats trapped throughout the main island were investigated for Leptospira renal carriage. All molecularly confirmed positive samples were further genotyped. RESULTS: A total of 51 patients fulfilled the biological criteria of acute leptospirosis, corresponding to an annual incidence of 54.6 (95% CI 40.7-71.8) per 100,000 inhabitants. Leptospira carriage in Rattus spp. was overall low (7.7%) but dramatically higher in Rattus norvegicus (52.9%) than in Rattus rattus (4.4%). Leptospira interrogans was the only detected species in both humans and rats, and was represented by three distinct Sequence Types (STs). Two were novel STs identified in two thirds of acute human cases while noteworthily absent from rats. CONCLUSIONS: This study shows that human leptospirosis still represents a heavy disease burden in Seychelles. Genotype data suggests that rats are actually not the main reservoir for human disease. We highlight a rather limited efficacy of preventive measures so far implemented in Seychelles. This could result from ineffective control measures of excreting animal populations, possibly due to a misidentification of the main contaminating reservoir(s). Altogether, presented data stimulate the exploration of alternative reservoir animal hosts.


Assuntos
Reservatórios de Doenças , Leptospira interrogans/isolamento & purificação , Leptospirose/epidemiologia , Leptospirose/veterinária , Zoonoses/epidemiologia , Adolescente , Adulto , Animais , Efeitos Psicossociais da Doença , Transmissão de Doença Infecciosa , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Incidência , Leptospirose/transmissão , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Seicheles/epidemiologia , Adulto Jovem , Zoonoses/transmissão
14.
PLoS Negl Trop Dis ; 10(8): e0004933, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27574792

RESUMO

Leptospirosis is a bacterial zoonosis of major concern on tropical islands. Human populations on western Indian Ocean islands are strongly affected by the disease although each archipelago shows contrasting epidemiology. For instance, Mayotte, part of the Comoros Archipelago, differs from the other neighbouring islands by a high diversity of Leptospira species infecting humans that includes Leptospira mayottensis, a species thought to be unique to this island. Using bacterial culture, molecular detection and typing, the present study explored the wild and domestic local mammalian fauna for renal carriage of leptospires and addressed the genetic relationships of the infecting strains with local isolates obtained from acute human cases and with Leptospira strains hosted by mammal species endemic to nearby Madagascar. Tenrec (Tenrec ecaudatus, Family Tenrecidae), a terrestrial mammal introduced from Madagascar, is identified as a reservoir of L. mayottensis. All isolated L. mayottensis sequence types form a monophyletic clade that includes Leptospira strains infecting humans and tenrecs on Mayotte, as well as two other Malagasy endemic tenrecid species of the genus Microgale. The lower diversity of L. mayottensis in tenrecs from Mayotte, compared to that occurring in Madagascar, suggests that L. mayottensis has indeed a Malagasy origin. This study also showed that introduced rats (Rattus rattus) and dogs are probably the main reservoirs of Leptospira borgpetersenii and Leptospira kirschneri, both bacteria being prevalent in local clinical cases. Data emphasize the epidemiological link between the two neighbouring islands and the role of introduced small mammals in shaping the local epidemiology of leptospirosis.


Assuntos
Reservatórios de Doenças/microbiologia , Eulipotyphla/microbiologia , Leptospira/isolamento & purificação , Leptospirose/transmissão , Animais , Comores , DNA Bacteriano/isolamento & purificação , Genótipo , Humanos , Espécies Introduzidas , Madagáscar , Filogenia , Zoonoses/transmissão
15.
PLoS Negl Trop Dis ; 10(6): e0004733, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27294677

RESUMO

BACKGROUND: Although leptospirosis is a zoonosis of major concern on tropical islands, the molecular epidemiology of the disease aiming at linking human cases to specific animal reservoirs has been rarely explored within these peculiar ecosystems. METHODOLOGY/PRINCIPAL FINDINGS: Five species of wild small mammals (n = 995) as well as domestic animals (n = 101) were screened for Leptospira infection on Reunion Island; positive samples were subsequently genotyped and compared to Leptospira from clinical cases diagnosed in 2012-2013 (n = 66), using MLST analysis. We identified two pathogenic species in human cases, namely Leptospira interrogans and Leptospira borgpetersenii. Leptospira interrogans was by far dominant both in clinical samples (96.6%) and in infected animal samples (95.8%), with Rattus spp and dogs being its exclusive carriers. The genetic diversity within L. interrogans was apparently limited to two sequence types (STs): ST02, identified among most clinical samples and in all rats with complete MLST, and ST34, identified in six humans, but not in rats. Noteworthy, L. interrogans detected in two stray dogs partially matched with ST02 and ST34. Leptospira borgpetersenii was identified in two clinical samples only (3.4%), as well as in cows and mice; four haplotypes were identified, of which two seemingly identical in clinical and animal samples. Leptospira borgpetersenii haplotypes detected in human cases were clearly distinct from the lineage detected so far in the endemic bat species Mormopterus francoismoutoui, thus excluding a role for this volant mammal in the local human epidemiology of the disease. CONCLUSIONS/SIGNIFICANCE: Our data confirm rats as a major reservoir of Leptospira on Reunion Island, but also pinpoint a possible role of dogs, cows and mice in the local epidemiology of human leptospirosis. This study shows that a comprehensive molecular characterization of pathogenic Leptospira in both clinical and animal samples helps to gaining insight into leptospirosis epidemiology within a specific environmental setting.


Assuntos
Reservatórios de Doenças/veterinária , Leptospira/isolamento & purificação , Leptospirose/epidemiologia , Leptospirose/transmissão , Doenças dos Roedores/epidemiologia , Doenças dos Roedores/transmissão , Animais , Bovinos , Quirópteros , Surtos de Doenças , Cães , Variação Genética , Genótipo , Humanos , Incidência , Leptospira/genética , Prevalência , Reunião/epidemiologia , Doenças dos Roedores/microbiologia , Roedores , Zoonoses
16.
Acta Trop ; 158: 6-12, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26829358

RESUMO

Salmonellosis is an economic burden to the livestock industry in Reunion Island. In this study, we wanted to improve our understanding of Salmonella epidemiology by studying the wild fauna of Reunion Island. We assessed Salmonella diversity in small non-flying mammals, birds and cockroaches in order to evaluate their potential role in the epidemiology of Salmonella. A total of 268 samples were collected from cockroaches, small mammals and birds. The bacteriological analyses revealed that 11.7% of non-flying mammals and 25% of cockroaches tested were Salmonella infected; two wild bird species were also detected positive. The 128 Salmonella isolates were distributed in fifteen serotypes and the most predominant were S. 4,[5],12:i:- (21.9% of positive samples) followed by S. Enteritidis (15.6%), S. Typhimurium (15.6%), S. Infantis (12.5%) and S. Weltevreden (12.5%). A total of 27 XbaI profiles were identified using pulsed-field gel electrophoresis. Comparison of these Salmonella strains with our collection of Salmonella isolated from pigs and pig farm environments at the same period revealed 14 strains in common between wild fauna and pigs, especially for cockroaches. Our results suggest that wild fauna of Reunion Island could be infected by strains of Salmonella also isolated from pigs or pig environment. They may play a role in both persistence and spreading of Salmonella and therefore, could be a source of infection in pig farms. Pest control against cockroaches could be a helpful tool in the reduction of Salmonella infection of pigs, limiting contacts between wild fauna and both pigs and pig environment. Special attention should be paid to S. 4,[5],12:i:- since it was predominant in Reunion Island's wild fauna and pigs and was the third most frequently reported serotype in human salmonellosis in Europe.


Assuntos
Animais Selvagens/microbiologia , Aves/microbiologia , Baratas/microbiologia , Salmonelose Animal/microbiologia , Salmonelose Animal/transmissão , Salmonella/patogenicidade , Sus scrofa/microbiologia , Agricultura , Animais , Eletroforese em Gel de Campo Pulsado , Feminino , Humanos , Reunião/epidemiologia , Salmonella/genética , Suínos/microbiologia , Doenças dos Suínos/epidemiologia
17.
Am J Trop Med Hyg ; 92(3): 617-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25646263

RESUMO

Rickettsia felis, Rickettsia typhi, and Bartonella DNA was detected by molecular tools in 12% of Rattus rattus fleas (Xenopsylla species) collected from Reunion Island. One-third of the infested commensal rodents captured during 1 year carried at least one infected flea. As clinical signs of these zoonoses are non-specific, they are often misdiagnosed.


Assuntos
Bartonella/isolamento & purificação , Rickettsia/isolamento & purificação , Sifonápteros/microbiologia , Animais , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , DNA Espaçador Ribossômico/genética , Infestações por Pulgas/epidemiologia , Infestações por Pulgas/veterinária , Humanos , Mamíferos , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Reunião/epidemiologia
18.
J Virol ; 88(15): 8268-77, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24829336

RESUMO

UNLABELLED: The Paramyxoviridae form an increasingly diverse viral family, infecting a wide variety of different hosts. In recent years, they have been linked to disease emergence in many different animal populations and in humans. Bats and rodents have been identified as major animal populations capable of harboring paramyxoviruses, and host shifting between these animals is likely to be an important driving factor in the underlying evolutionary processes that eventually lead to disease emergence. Here, we have studied paramyxovirus circulation within populations of endemic and introduced wild small mammals of the southwestern Indian Ocean region and belonging to four taxonomic orders: Rodentia, Afrosoricida, Soricomorpha, and Chiroptera. We report elevated infection levels as well as widespread paramyxovirus dispersal and frequent host exchange of a newly emerging genus of the Paramyxoviridae, currently referred to as the unclassified morbillivirus-related viruses (UMRVs). In contrast to other genera of the Paramyxoviridae, where bats have been shown to be a key host species, we show that rodents (and, in particular, Rattus rattus) are significant spreaders of UMRVs. We predict that the ecological particularities of the southwestern Indian Ocean, where small mammal species often live in densely packed, multispecies communities, in combination with the increasing invasion of R. rattus and perturbations of endemic animal communities by active anthropological development, will have a major influence on the dynamics of UMRV infection. IMPORTANCE: Identification of the infectious agents that circulate within wild animal reservoirs is essential for several reasons: (i) infectious disease outbreaks often originate from wild fauna; (ii) anthropological expansion increases the risk of contact between human and animal populations and, as a result, the risk of disease emergence; (iii) evaluation of pathogen reservoirs helps in elaborating preventive measures to limit the risk of disease emergence. Many paramyxoviruses for which bats and rodents serve as major reservoirs have demonstrated their potential to cause disease in humans and animals. In the context of the biodiversity hot spot of southwestern Indian Ocean islands and their rich endemic fauna, we show that highly diverse UMRVs exchange between various endemic animal species, and their dissemination likely is facilitated by the introduced Rattus rattus. Hence, many members of the Paramyxoviridae appear well adapted for the study of the viral phylodynamics that may be associated with disease emergence.


Assuntos
Variação Genética , Infecções por Paramyxoviridae/veterinária , Paramyxoviridae/classificação , Paramyxoviridae/isolamento & purificação , RNA Viral/genética , Animais , Animais Selvagens , Análise por Conglomerados , Ilhas do Oceano Índico/epidemiologia , Dados de Sequência Molecular , Paramyxoviridae/genética , Infecções por Paramyxoviridae/epidemiologia , Infecções por Paramyxoviridae/virologia , Filogenia , Análise de Sequência de DNA , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...