Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Am Nat ; 204(1): 55-72, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38857341

RESUMO

AbstractIdealized ring species, with approximately continuous gene flow around a geographic barrier but singular reproductive isolation at a ring terminus, are rare in nature. A broken ring species model preserves the geographic setting and fundamental features of an idealized model but accommodates varying degrees of gene flow restriction over complex landscapes through evolutionary time. Here we examine broken ring species dynamics in Calisoga spiders, which, like the classic ring species Ensatina salamanders, are distributed around the Central Valley of California. Using nuclear and mitogenomic data, we test key predictions of common ancestry, ringlike biogeography, biogeographic timing, population connectivity, and terminal overlap. We show that a ring complex of populations shares a single common ancestor, and from an ancestral area in the Sierra Nevada mountains, two distributional and phylogenomic arms encircle the Central Valley. Isolation by distance occurs along these distributional arms, although gene flow restriction is also evident. Where divergent lineages meet in the South Coast Ranges, we find rare lineage sympatry, without evidence for nuclear gene flow and with clear evidence for morphological and ecological divergence. We discuss general insights provided by broken ring species and how such a model could be explored and extended in other systems and future studies.


Assuntos
Fluxo Gênico , Especiação Genética , Aranhas , Animais , California , Aranhas/genética , Aranhas/anatomia & histologia , Aranhas/fisiologia , Aranhas/classificação , Filogenia , Isolamento Reprodutivo
2.
Mol Phylogenet Evol ; 110: 104-121, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28212874

RESUMO

The increased availability of nuclear DNA sequence data has led to a better appreciation of the role and frequency of introgressive hybridization and subsequent mitochondrial capture in misleading phylogenetic hypotheses based on mtDNA sequence data alone. Relationships among members of the alligator lizard genus Elgaria have been addressed with morphology, allozyme and mtDNA sequence data with discordant results. In this study, we use seven nuclear loci (total of 5.9kb) and ∼3kb of mtDNA to infer the phylogenetic relationships among Elgaria species and test whether the discordance among previous phylogenetic hypotheses is due to introgression and mtDNA capture. While gene tree topologies varied among the different loci, we recovered a well-resolved coalescent-based species tree. Contrary to our expectations, the nDNA-only species tree does not support the sister relationship between E. kingii and E. panamintina inferred from the previous allozyme study. Nevertheless, we found evidence for possible mitochondrial capture in two unexpected situations. The first instance of mtDNA capture involves E. paucicarinata from the Cape Region of Baja California. MtDNA recovered a clade comprising E. paucicarinata and the other two peninsular endemics, while the nDNA-only species tree recovered E. paucicarinata as sister to the continental E. kingii. We hypothesize that this discordance is the result of ancient mitochondrial capture rather than incomplete lineage sorting. Additionally, analyses of nDNA recovered E. panamintina as sister to an E. multicarinata North lineage, whereas the mtDNA gene tree recovers E. panamintina nested within a southern E. multicarinata clade. We hypothesize that this discordance also may be due to mitochondrial capture. Additionally, hybridization between these two lineages may have resulted in geographically limited nuclear introgression. Divergence dating analyses suggest that oviparous Elgaria species diverged within a relatively narrow timeframe from the late Miocene to early Pliocene. We find that accounting for introgressed alleles is important when inferring phylogenetic relationships when using coalescent-based approaches.


Assuntos
DNA Mitocondrial/genética , Loci Gênicos , Lagartos/genética , Modelos Genéticos , Filogenia , Animais , Geografia , Mitocôndrias/genética , América do Norte , Fatores de Tempo
3.
Mol Phylogenet Evol ; 91: 56-67, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26025426

RESUMO

We use mitochondrial and multi-locus nuclear DNA sequence data to infer both species boundaries and species relationships within California nemesiid spiders. Higher-level phylogenetic data show that the California radiation is monophyletic and distantly related to European members of the genus Brachythele. As such, we consider all California nemesiid taxa to belong to the genus Calisoga Chamberlin, 1937. Rather than find support for one or two taxa as previously hypothesized, genetic data reveal Calisoga to be a species-rich radiation of spiders, including perhaps dozens of species. This conclusion is supported by multiple mitochondrial barcoding analyses, and also independent analyses of nuclear data that reveal general genealogical congruence. We discovered three instances of sympatry, and genetic data indicate reproductive isolation when in sympatry. An examination of female reproductive morphology does not reveal species-specific characters, and observed male morphological differences for a subset of putative species are subtle. Our coalescent species tree analysis of putative species lays the groundwork for future research on the taxonomy and biogeographic history of this remarkable endemic radiation.


Assuntos
Aranhas/classificação , Animais , California , Feminino , Genes Mitocondriais , Masculino , Tipagem de Sequências Multilocus , Filogenia , Aranhas/anatomia & histologia , Aranhas/genética , Simpatria
4.
Mol Phylogenet Evol ; 59(3): 587-602, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21443956

RESUMO

A growing body of evidence indicates that in some cases morphology-based species circumscription of lichenized fungi misrepresents the number of existing species. The cosmopolitan "rock posy" lichen (Rhizoplaca melanophthalma) species-complex includes a number of morphologically distinct species that are both geographically and ecologically widespread, providing a model system to evaluate speciation in lichen-forming ascomycetes. In this study, we assembled multiple lines of evidence from nuclear DNA sequence data, morphology, and biochemistry for species delimitation in the R. melanophthalma species-complex. We identify a total of ten candidate species in this study, four of which were previously recognized as distinct taxa and six previously unrecognized lineages found within what has been thus far considered a single species. Candidate species are supported using inferences from multiple empirical operational criteria. Multiple instances of sympatry support the view that these lineages merit recognition as distinct taxa. Generally, we found little corroboration between morphological and chemical characters, and previously unidentified lineages were morphologically polymorphic. However, secondary metabolite data supported one cryptic saxicolous lineage, characterized by orsellinic-derived gyrophoric and lecanoric acids, which we consider to be taxonomically significant. Our study of the R. melanophthalma species-complex indicates that the genus Rhizoplaca, as presently circumscribed, is more diverse in western North American than originally perceived, and we present our analyses as a working example of species delimitation in morphologically cryptic and recently diverged lichenized fungi.


Assuntos
Ascomicetos/genética , Líquens/microbiologia , Ascomicetos/classificação , Teorema de Bayes , Haplótipos/genética , Filogenia , Polimorfismo Genético/genética
5.
Proc Biol Sci ; 278(1718): 2568-74, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21270029

RESUMO

Intercontinental dispersal via land bridge connections has been important in the biogeographic history of many Holarctic plant and animal groups. Likewise, some groups appear to have accomplished trans-oceanic dispersal via rafting. Dibamid lizards are a clade of poorly known fossorial, essentially limbless species traditionally split into two geographically disjunct genera: Dibamus comprises approximately 20 Southeast Asian species, many of which have very limited geographical distributions, and the monotypic genus Anelytropsis occupies a small area of northeastern Mexico. Although no formal phylogeny of the group exists, a sister-taxon relationship between the two genera has been assumed based on biogeographic considerations. We used DNA sequence data from one mitochondrial and six nuclear protein-coding genes to construct a phylogeny of Dibamidae and to estimate divergence times within the group. Surprisingly, sampled Dibamus species form two deeply divergent, morphologically conserved and geographically concordant clades, one of which is the sister taxon of Anelytropsis papillosus. Our analyses indicate Palaearctic to Nearctic Beringian dispersal in the Late Palaeocene to Eocene. Alternatively, a trans-Pacific rafting scenario would extend the upper limit on dispersal to the Late Cretaceous. Either scenario constitutes a remarkable long-distance dispersal in what would seem an unlikely candidate.


Assuntos
Migração Animal , Lagartos/genética , Lagartos/fisiologia , Filogenia , Alaska , Animais , Sudeste Asiático , DNA Mitocondrial/genética , Evolução Molecular , Lagartos/classificação , México , Proteínas Nucleares/genética , Filogeografia , Análise de Sequência de DNA , Sibéria , Especificidade da Espécie
6.
Mol Ecol ; 16(21): 4455-81, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17868311

RESUMO

The lizard genus Xantusia of southwestern North America has received recent attention in relation to delimiting species. Using more than 500 lizards from 156 localities, we further test hypothesized species boundaries and clarify phylogeographical patterns, particularly in regions of potential secondary contact. We sequenced the entire mitochondrial cytochrome b gene for every lizard in the study, plus a second mitochondrial DNA (mtDNA) region and two nuclear introns for subsets of the total sample. Phylogenetic analyses of the mtDNA recover a well-resolved, novel hypothesis for species in the Xantusia vigilis complex. The nuclear DNA (nDNA) data provide independent support for the recognition of X. arizonae, X. bezyi and X. wigginsi. Differences between the respective mtDNA and nDNA topologies result from either the effects of lineage sorting or ancient introgression. Nuclear data confirm the inference that some populations of X. vigilis in northwestern Arizona converged on rock-crevice-dwelling morphology and are not X. arizonae with an introgressed X. vigilis mtDNA genome. The historical independence of ancient cryptic lineages of Xantusia in southern California is also corroborated, though limited introgression is detected. Our proposed biogeographical scenario indicates that diversification of this group was driven by vicariance beginning in the late Miocene. Additionally, Pleistocene climatical changes influenced Xantusia distribution, and the now inhospitable Colorado Desert previously supported night lizard presence. The current taxonomy of the group likely underestimates species diversity within the group, and our results collectively show that while convergence on the rock-crevice-dwelling morphology is one hallmark of Xantusia evolution, morphological stasis is paradoxically another.


Assuntos
Lagartos/genética , Animais , Arizona , California , DNA Mitocondrial/química , Clima Desértico , Marcadores Genéticos , Geografia , Lagartos/classificação , Lagartos/fisiologia , Nevada , Filogenia , Dinâmica Populacional , Análise de Sequência de DNA , Utah
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...