Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(3): 109330, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38496296

RESUMO

Identifying immune modulators that impact neutralizing antibody responses against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is of great relevance. We postulated that high serum concentrations of soluble angiotensin-converting enzyme 2 (sACE2) might mask the spike and interfere with antibody maturation toward the SARS-CoV-2-receptor-binding motif (RBM). We tested 717 longitudinal samples from 295 COVID-19 patients and showed a 2- to 10-fold increase of enzymatically active sACE2 (a-sACE2), with up to 1 µg/mL total sACE2 in moderate and severe patients. Fifty percent of COVID-19 sera inhibited ACE2 activity, in contrast to 1.3% of healthy donors and 4% of non-COVID-19 pneumonia patients. A mild inverse correlation of a-sACE2 with RBM-directed serum antibodies was observed. In silico, we show that sACE2 concentrations measured in COVID-19 sera can disrupt germinal center formation and inhibit timely production of high-affinity antibodies. We suggest that sACE2 is a biomarker for COVID-19 and that soluble receptors may contribute to immune suppression informing vaccine design.

2.
Sci Immunol ; 9(92): eadi0042, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306418

RESUMO

Familial hemophagocytic lymphohistiocytosis (FHL) is an inherited, often fatal immune deficiency characterized by severe systemic hyperinflammation. Although allogeneic bone marrow transplantation can be curative, more effective therapies are urgently needed. FHL is caused by inactivating mutations in proteins that regulate cellular immunity. Here, we used an adeno-associated virus-based CRISPR-Cas9 system with an inhibitor of nonhomologous end joining to repair such mutations in potentially long-lived T cells ex vivo. Repaired CD8 memory T cells efficiently cured lethal hyperinflammation in a mouse model of Epstein-Barr virus-triggered FHL2, a subtype caused by perforin-1 (Prf1) deficiency. Furthermore, repair of PRF1 and Munc13-4 (UNC13D)-whose deficiency causes the FHL subtype FHL3-in mutant memory T cells from two critically ill patients with FHL restored T cell cytotoxicity. These results provide a starting point for the treatment of genetic T cell immune dysregulation syndromes with repaired autologous T cells.


Assuntos
Infecções por Vírus Epstein-Barr , Linfo-Histiocitose Hemofagocítica , Animais , Camundongos , Humanos , Linfo-Histiocitose Hemofagocítica/genética , Linfo-Histiocitose Hemofagocítica/terapia , Sistemas CRISPR-Cas , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/terapia , Células T de Memória , Herpesvirus Humano 4 , Proteínas de Membrana/genética
3.
Eur J Immunol ; 53(10): e2350408, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37435628

RESUMO

The structure-based design of antigens holds promise for developing vaccines with higher efficacy and improved safety profiles. We postulate that abrogation of host receptor interaction bears potential for the improvement of vaccines by preventing antigen-induced modification of receptor function as well as the displacement or masking of the immunogen. Antigen modifications may yet destroy epitopes crucial for antibody neutralization. Here, we present a methodology that integrates deep mutational scans to identify and score SARS-CoV-2 receptor binding domain variants that maintain immunogenicity, but lack interaction with the widely expressed host receptor. Single point mutations were scored in silico, validated in vitro, and applied in vivo. Our top-scoring variant receptor binding domain-G502E prevented spike-induced cell-to-cell fusion, receptor internalization, and improved neutralizing antibody responses by 3.3-fold in rabbit immunizations. We name our strategy BIBAX for body-inert, B-cell-activating vaccines, which in the future may be applied beyond SARS-CoV-2 for the improvement of vaccines by design.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Coelhos , Anticorpos Neutralizantes , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2 , COVID-19/prevenção & controle , Anticorpos Antivirais
4.
Bio Protoc ; 13(8): e4661, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37113334

RESUMO

The CRISPR/Cas9 system is a powerful tool for gene repair that holds great potential for gene therapy to cure monogenic diseases. Despite intensive improvement, the safety of this system remains a major clinical concern. In contrast to Cas9 nuclease, Cas9 nickases with a pair of short-distance (38-68 bp) PAM-out single-guide RNAs (sgRNAs) preserve gene repair efficiency while strongly reducing off-target effects. However, this approach still leads to efficient unwanted on-target mutations that may cause tumorigenesis or abnormal hematopoiesis. We establish a precise and safe spacer-nick gene repair approach that combines Cas9D10A nickase with a pair of PAM-out sgRNAs at a distance of 200-350 bp. In combination with adeno-associated virus (AAV) serotype 6 donor templates, this approach leads to efficient gene repair with minimal unintended on- and off-target mutations in human hematopoietic stem and progenitor cells (HSPCs). Here, we provide detailed protocols to use the spacer-nick approach for gene repair and to assess the safety of this system in human HSPCs. The spacer-nick approach enables efficient gene correction for repair of disease-causing mutations with increased safety and suitability for gene therapy. Graphical overview.

5.
Eur J Immunol ; 53(5): e2250210, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36856018

RESUMO

Diverse autoantibodies were suggested to contribute to severe outcomes of COVID-19, but their functional implications are largely unclear. ACE2, the SARS-CoV-2 receptor and a key regulator of blood pressure, was described to be one of many targets of autoantibodies in COVID-19. ACE2 in its soluble form (sACE2) is highly elevated in the blood of critically ill patients, raising the question of whether sACE2:spike complexes induce ACE2 reactivity. Screening 247 COVID-19 patients, we observed elevated sACE2 and anti-ACE2 IgG that were poorly correlated. Interestingly, levels of IgGs recognizing ACE2, IFNα2, and CD26 strongly correlated in severe COVID-19, with 15% of sera showing polyreactivity versus 4.1% exhibiting target-directed autoimmunity. Promiscuous autoantibodies failed to impair the activity of ACE2 and IFNα2, while only specific anti-IFNα2 IgG compromised cytokine function. Our study suggests that the detection of autoantibodies in COVID-19 is often attributed to a promiscuous reactivity, potentially misinterpreted as target-specific autoimmunity with functional impact.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Autoanticorpos , Peptidil Dipeptidase A , Imunoglobulina G
6.
Proc Natl Acad Sci U S A ; 119(36): e2205470119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037353

RESUMO

Recombination of antibody genes in B cells can involve distant genomic loci and contribute a foreign antigen-binding element to form hybrid antibodies with broad reactivity for Plasmodium falciparum. So far, antibodies containing the extracellular domain of the LAIR1 and LILRB1 receptors represent unique examples of cross-chromosomal antibody diversification. Here, we devise a technique to profile non-VDJ elements from distant genes in antibody transcripts. Independent of the preexposure of donors to malaria parasites, non-VDJ inserts were detected in 80% of individuals at frequencies of 1 in 104 to 105 B cells. We detected insertions in heavy, but not in light chain or T cell receptor transcripts. We classify the insertions into four types depending on the insert origin and destination: 1) mitochondrial and 2) nuclear DNA inserts integrated at VDJ junctions; 3) inserts originating from telomere proximal genes; and 4) fragile sites incorporated between J-to-constant junctions. The latter class of inserts was exclusively found in memory and in in vitro activated B cells, while all other classes were already detected in naïve B cells. More than 10% of inserts preserved the reading frame, including transcripts with signs of antigen-driven affinity maturation. Collectively, our study unravels a mechanism of antibody diversification that is layered on the classical V(D)J and switch recombination.


Assuntos
Diversidade de Anticorpos , Linfócitos B , Genes de Imunoglobulinas , Anticorpos Antiprotozoários/genética , Antígenos CD/imunologia , Linfócitos B/imunologia , Genômica , Humanos , Cadeias Leves de Imunoglobulina/genética , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/imunologia , Mutagênese Insercional , Plasmodium falciparum , Receptores de Antígenos de Linfócitos T/genética , Receptores Imunológicos/imunologia
7.
Sci Adv ; 8(22): eabm9106, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35658035

RESUMO

While CRISPR-Cas9 is key for the development of gene therapy, its potential off-target mutations are still a major concern. Here, we establish a "spacer-nick" gene correction approach that combines the Cas9D10A nickase with a pair of PAM-out sgRNAs at a distance of 200 to 350 bp. In combination with adeno-associated virus (AAV) serotype 6 template delivery, our approach led to efficient HDR in human hematopoietic stem and progenitor cells (HSPCs including long-term HSCs) and T cells, with minimal NHEJ-mediated on-target mutations. Using spacer-nick, we developed an approach to repair disease-causing mutations occurring in the HBB, ELANE, IL7R, and PRF1 genes. We achieved gene correction efficiencies of 20 to 50% with minimal NHEJ-mediated on-target mutations. On the basis of in-depth off-target assessment, frequent unintended genetic alterations induced by classical CRISPR-Cas9 were significantly reduced or absent in the HSPCs treated with spacer-nick. Thus, the spacer-nick gene correction approach provides improved safety and suitability for gene therapy.


Assuntos
Sistemas CRISPR-Cas , Células-Tronco Hematopoéticas , Dependovirus , Edição de Genes , Terapia Genética , Humanos , Mutação
8.
Open Biol ; 11(1): 200283, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33499763

RESUMO

Precision genomic alterations largely rely on homology directed repair (HDR), but targeting without homology using the non-homologous end-joining (NHEJ) pathway has gained attention as a promising alternative. Previous studies demonstrated precise insertions formed by the ligation of donor DNA into a targeted genomic double-strand break in both dividing and non-dividing cells. Here, we demonstrate the use of NHEJ repair to replace genomic segments with donor sequences; we name this method 'Replace' editing (Rational end-joining protocol delivering a targeted sequence exchange). Using CRISPR/Cas9, we create two genomic breaks and ligate a donor sequence in-between. This exchange of a genomic for a donor sequence uses neither microhomology nor homology arms. We target four loci in cell lines and show successful exchange of exons in 16-54% of human cells. Using linear amplification methods and deep sequencing, we quantify the diversity of outcomes following Replace editing and profile the ligated interfaces. The ability to replace exons or other genomic sequences in cells not efficiently modified by HDR holds promise for both basic research and medicine.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Linhagem Celular Tumoral , Reparo do DNA por Junção de Extremidades/genética , DNA Polimerase beta/genética , Éxons , Genes Reporter , Loci Gênicos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Técnicas de Amplificação de Ácido Nucleico , RNA Guia de Cinetoplastídeos/metabolismo
9.
Front Immunol ; 9: 2309, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356675

RESUMO

Age-related changes can significantly alter the state of adaptive immune system and often lead to attenuated response to novel pathogens and vaccination. In present study we employed 5'RACE UMI-based full length and nearly error-free immunoglobulin profiling to compare plasma cell antibody repertoires in young (19-26 years) and middle-age (45-58 years) individuals vaccinated with a live yellow fever vaccine, modeling a newly encountered pathogen. Our analysis has revealed age-related differences in the responding antibody repertoire ranging from distinct IGH CDR3 repertoire properties to differences in somatic hypermutation intensity and efficiency and antibody lineage tree structure. Overall, our findings suggest that younger individuals respond with a more diverse antibody repertoire and employ a more efficient somatic hypermutation process than elder individuals in response to a newly encountered pathogen.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Imunidade Ativa , Receptores de Antígenos de Linfócitos B/metabolismo , Vacina contra Febre Amarela/imunologia , Adulto , Animais , Anticorpos Antivirais/imunologia , Feminino , Humanos , Imunidade Ativa/genética , Regiões Constantes de Imunoglobulina/genética , Cadeias Pesadas de Imunoglobulinas/genética , Masculino , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos B/genética , Hipermutação Somática de Imunoglobulina , Vacinação , Febre Amarela/prevenção & controle , Adulto Jovem
10.
PLoS Comput Biol ; 13(5): e1005480, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28475621

RESUMO

Unique molecular identifiers (UMIs) show outstanding performance in targeted high-throughput resequencing, being the most promising approach for the accurate identification of rare variants in complex DNA samples. This approach has application in multiple areas, including cancer diagnostics, thus demanding dedicated software and algorithms. Here we introduce MAGERI, a computational pipeline that efficiently handles all caveats of UMI-based analysis to obtain high-fidelity mutation profiles and call ultra-rare variants. Using an extensive set of benchmark datasets including gold-standard biological samples with known variant frequencies, cell-free DNA from tumor patient blood samples and publicly available UMI-encoded datasets we demonstrate that our method is both robust and efficient in calling rare variants. The versatility of our software is supported by accurate results obtained for both tumor DNA and viral RNA samples in datasets prepared using three different UMI-based protocols.


Assuntos
Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Bases de Dados Genéticas , Humanos , Neoplasias/genética , RNA Viral/genética , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...