Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Ann Endocrinol (Paris) ; 85(3): 175-178, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38871506

RESUMO

This lecture delves into the pivotal role of adipose tissue in obesity and its response to weight loss, particularly via bariatric surgery. Adipose tissue, responsible for storing excess energy, undergoes significant changes during obesity, marked by inflammation and fibrosis. Bariatric surgery, serving as a model, allow the exploration of adipose tissue remodeling post-weight loss, inducing metabolic and fibro-inflammatory shifts. Despite successful weight loss, inflammation and fibrosis persist, as evidenced by changes in immune cells, altered cytokine profiles and the accumulation of extracellular matrix (ECM). Unfortunately, these lingering effects impair the normal adipose tissue function. In this context, adipose progenitors, an heterogenous resident population of mesenchymal stromal cells, display functions important to fibrosis development, capable of differentiating into myofibroblasts and contributing to ECM deposition. Particularly, a distinct subpopulation of adipose progenitors with high CD9 expression (CD9high) is associated with fibrosis and insulin resistance in human obesity. The persistence of fibrosis post-weight loss poses challenges, correlating with metabolic dysfunction despite improved glucose tolerance. A comprehensive understanding of the mechanisms driving adipose tissue remodeling and fibrosis post-weight loss is imperative for the development of effective treatments for obesity. The intricate interplay between adipose tissue, inflammation, and fibrosis underscores the necessity for further in-depth research to elucidate these mechanisms and formulate targeted therapies for obesity-related complications.


Assuntos
Tecido Adiposo , Cirurgia Bariátrica , Fibrose , Obesidade , Redução de Peso , Humanos , Cirurgia Bariátrica/métodos , Tecido Adiposo/metabolismo , Obesidade/cirurgia , Obesidade/metabolismo , Redução de Peso/fisiologia , Inflamação/patologia , Resistência à Insulina/fisiologia
2.
Biomedicines ; 11(12)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38137473

RESUMO

The concept of Developmental Origin of Health and Disease (DOHaD) postulates that adult-onset metabolic disorders may originate from suboptimal conditions during critical embryonic and fetal programming windows. In particular, nutritional disturbance during key developmental stages may program the set point of adiposity and its associated metabolic diseases later in life. Numerous studies in mammals have reported that maternal obesity and the resulting accelerated growth in neonates may affect adipocyte development, resulting in persistent alterations in adipose tissue plasticity (i.e., adipocyte proliferation and storage) and adipocyte function (i.e., insulin resistance, impaired adipokine secretion, reduced thermogenesis, and higher inflammation) in a sex- and depot-specific manner. Over recent years, adipose progenitor cells (APCs) have been shown to play a crucial role in adipose tissue plasticity, essential for its development, maintenance, and expansion. In this review, we aim to provide insights into the developmental timeline of lineage commitment and differentiation of APCs and their role in predisposing individuals to obesity and metabolic diseases. We present data supporting the possible implication of dysregulated APCs and aberrant perinatal adipogenesis through epigenetic mechanisms as a primary mechanism responsible for long-lasting adipose tissue dysfunction in offspring born to obese mothers.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37646578

RESUMO

Combination therapies targeting multiple organs and metabolic pathways are promising therapeutic options to combat obesity progression and/or its comorbidities. The alterations in the composition of the gut microbiota initially observed in obesity have been extended recently to functional alterations. Bacterial functions involve metabolites synthesis that may contribute to both the gut microbiota and the host physiology. Among them are B vitamins, whose metabolism at the systemic, tissue or microbial level are dysfunctional in obesity. We previously reported that the combination of oral supplementation of a prebiotic (fructo-oligosaccharides, FOS) and vitamin B7/B8 (biotin) impedes fat mass accumulation and hyperglycemia in mice with established obesity. This was associated with an attenuation of dysbiosis with improved microbial vitamin metabolism. We now extend this study by characterizing whole-body energy metabolism along with adipose tissue transcriptome and histology in this mouse model. We observed that FOS resulted in increased caloric excretion in parallel with down-regulation of genes and proteins involved in jejunal lipid transport. The combined treatments also strongly inhibited the accumulation of subcutaneous fat mass, with a reduced adipocyte size and expression of lipid metabolism genes. Down-regulation of inflammatory and fibrotic genes and proteins was also observed in both visceral and brown adipose tissues and liver by combined FOS and biotin supplementation. In conclusion, oral administration of a prebiotic and biotin has a beneficial impact on the metabolism of key organs involved in the pathophysiology of obesity, which could have promising translational applications.

4.
Diabetes ; 72(2): 159-169, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36668999

RESUMO

Hyaluronic acid, or hyaluronan (HA), is a nonsulfated glucosaminoglycan that has long been recognized for its hydrophilic properties and is widely used as a dermal filler. Despite much attention given to the study of other extracellular matrix (ECM) components, in the field of ECM properties and their contribution to tissue fibroinflammation, little is known of HA's potential role in the extracellular milieu. However, recent studies suggest that it is involved in inflammatory response, diet-induced insulin resistance, adipogenesis, and autoimmunity in type 1 diabetes. Based on its unique physical property as a regulator of osmotic pressure, we emphasize underestimated implications in adipose tissue function, adipogenesis, and obesity-related dysfunction.


Assuntos
Diabetes Mellitus , Ácido Hialurônico , Humanos , Matriz Extracelular/metabolismo , Inflamação/metabolismo , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Diabetes Mellitus/metabolismo
5.
Cells ; 11(15)2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35954152

RESUMO

The expansion of adipose tissue is an adaptive mechanism that increases nutrient buffering capacity in response to an overall positive energy balance. Over the course of expansion, the adipose microenvironment undergoes continual remodeling to maintain its structural and functional integrity. However, in the long run, adipose tissue remodeling, typically characterized by adipocyte hypertrophy, immune cells infiltration, fibrosis and changes in vascular architecture, generates mechanical stress on adipose cells. This mechanical stimulus is then transduced into a biochemical signal that alters adipose function through mechanotransduction. In this review, we describe the physical changes occurring during adipose tissue remodeling, and how they regulate adipose cell physiology and promote obesity-associated dysfunction in adipose tissue.


Assuntos
Tecido Adiposo , Mecanotransdução Celular , Adipócitos , Biologia , Humanos , Obesidade
6.
Nat Commun ; 13(1): 2958, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35618718

RESUMO

The pleiotropic function of long noncoding RNAs is well recognized, but their direct role in governing metabolic homeostasis is less understood. Here, we describe a human adipocyte-specific lncRNA, ADIPINT, that regulates pyruvate carboxylase, a pivotal enzyme in energy metabolism. We developed an approach, Targeted RNA-protein identification using Orthogonal Organic Phase Separation, which identifies that ADIPINT binds to pyruvate carboxylase and validated the interaction with electron microscopy. ADIPINT knockdown alters the interactome and decreases the abundance and enzymatic activity of pyruvate carboxylase in the mitochondria. Reduced ADIPINT or pyruvate carboxylase expression lowers adipocyte lipid synthesis, breakdown, and lipid content. In human white adipose tissue, ADIPINT expression is increased in obesity and linked to fat cell size, adipose insulin resistance, and pyruvate carboxylase activity. Thus, we identify ADIPINT as a regulator of lipid metabolism in human white adipocytes, which at least in part is mediated through its interaction with pyruvate carboxylase.


Assuntos
Piruvato Carboxilase , RNA Longo não Codificante , Adipócitos Brancos/metabolismo , Tecido Adiposo/metabolismo , Humanos , Lipídeos , Piruvato Carboxilase/genética , Piruvato Carboxilase/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
7.
Mol Metab ; 61: 101512, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35550189

RESUMO

BACKGROUND/PURPOSE: Adipose tissue contains progenitor cells that contribute to beneficial tissue expansion when needed by de novo adipocyte formation (classical white or beige fat cells with thermogenic potential). However, in chronic obesity, they can exhibit an activated pro-fibrotic, extracellular matrix (ECM)-depositing phenotype that highly aggravates obesity-related adipose tissue dysfunction. METHODS: Given that progenitors' fibrotic activation and fat cell browning appear to be antagonistic cell fates, we have examined the anti-fibrotic potential of pro-browning agents in an obesogenic condition. RESULTS: In obese mice fed a high fat diet, thermoneutral housing, which induces brown fat cell dormancy, increases the expression of ECM gene programs compared to conventionally raised animals, indicating aggravation of obesity-related tissue fibrosis at thermoneutrality. In a model of primary cultured murine adipose progenitors, we found that exposure to ß-hydroxybutyrate selectively reduced Tgfß-dependent profibrotic responses of ECM genes like Ctgf, Loxl2 and Fn1. This effect is observed in both subcutaneous and visceral-derived adipose progenitors, as well as in 3T3-L1 fibroblasts. In 30 patients with obesity eligible for bariatric surgery, those with higher circulating ß-hydroxybutyrate levels have lower subcutaneous adipose tissue fibrotic scores. Mechanistically, ß-hydroxybutyrate limits Tgfß-dependent collagen accumulation and reduces Smad2-3 protein expression and phosphorylation in visceral progenitors. Moreover, ß-hydroxybutyrate induces the expression of the ZFP36 gene, encoding a post-transcriptional regulator that promotes the degradation of mRNA by binding to AU-rich sites within 3'UTRs. Importantly, complete ZFP36 deficiency in a mouse embryonic fibroblast line from null mice, or siRNA knock-down in primary progenitors, indicate that ZFP36 is required for ß-hydroxybutyrate anti-fibrotic effects. CONCLUSION: These data unravel the potential of ß-hydroxybutyrate to limit adipose tissue matrix deposition, a finding that might exploited in an obesogenic context.


Assuntos
Tecido Adiposo Marrom , Tecido Adiposo Branco , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/farmacologia , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Fibroblastos/metabolismo , Fibrose , Humanos , Camundongos , Obesidade/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Tristetraprolina/metabolismo
8.
Nat Metab ; 4(2): 190-202, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35165448

RESUMO

The mechanisms promoting disturbed white adipocyte function in obesity remain largely unclear. Herein, we integrate white adipose tissue (WAT) metabolomic and transcriptomic data from clinical cohorts and find that the WAT phosphocreatine/creatine ratio is increased and creatine kinase-B expression and activity is decreased in the obese state. In human in vitro and murine in vivo models, we demonstrate that decreased phosphocreatine metabolism in white adipocytes alters adenosine monophosphate-activated protein kinase activity via effects on adenosine triphosphate/adenosine diphosphate levels, independently of WAT beigeing. This disturbance promotes a pro-inflammatory profile characterized, in part, by increased chemokine (C-C motif) ligand 2 (CCL2) production. These data suggest that the phosphocreatine/creatine system links cellular energy shuttling with pro-inflammatory responses in human and murine white adipocytes. Our findings provide unexpected perspectives on the mechanisms driving WAT inflammation in obesity and may present avenues to target adipocyte dysfunction.


Assuntos
Adipócitos Brancos , Creatina , Adipócitos Brancos/metabolismo , Animais , Humanos , Inflamação/metabolismo , Camundongos , Obesidade/metabolismo , Fosfocreatina
9.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054817

RESUMO

Adipose tissue dysfunction is strongly associated with obesity and its metabolic complications such as type 2 diabetes and cardiovascular diseases. It is well established that lipid-overloaded adipose tissue produces a large range of secreted molecules that contribute a pro-inflammatory microenvironment which subsequently disseminates towards multi-organ metabolic homeostasis disruption. Besides physiopathological contribution of adipose-derived molecules, a new paradigm is emerging following the discovery that adipocytes have a propensity to extrude damaged mitochondria in the extracellular space, to be conveyed through the blood and taken up by cell acceptors, in a process called intercellular mitochondria transfer. This review summarizes the discovery of mitochondria transfer, its relation to cell quality control systems and recent data that demonstrate its relevant implication in the context of obesity-related adipose tissue dysfunction.


Assuntos
Tecido Adiposo/patologia , Espaço Extracelular/metabolismo , Mitocôndrias/metabolismo , Obesidade/patologia , Animais , Humanos , Doenças Metabólicas/metabolismo , Modelos Biológicos
10.
World J Diabetes ; 12(4): 366-382, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33889285

RESUMO

According to the developmental origin of health and disease concept, the risk of many age-related diseases is not only determined by genetic and adult lifestyle factors but also by factors acting during early development. In particular, maternal obesity and neonatal accelerated growth predispose offspring to overweight and type 2 diabetes (T2D) in adulthood. This concept mainly relies on the developmental plasticity of adipose tissue and pancreatic ß-cell programming in response to suboptimal milieu during the perinatal period. These changes result in unhealthy hypertrophic adipocytes with decreased capacity to store fat, low-grade inflammation and loss of insulin-producing pancreatic ß-cells. Over the past years, many efforts have been made to understand how maternal obesity induces long-lasting adipose tissue and pancreatic ß-cell dysfunction in offspring and what are the molecular basis of the transgenerational inheritance of T2D. In particular, rodent studies have shed light on the role of epigenetic mechanisms in linking maternal nutritional manipulations to the risk for T2D in adulthood. In this review, we discuss epigenetic adipocyte and ß-cell remodeling during development in the progeny of obese mothers and the persistence of these marks as a basis of obesity and T2D predisposition.

11.
Adipocyte ; 9(1): 620-625, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33043853

RESUMO

A chronic low-grade inflammation of white adipose tissue (WAT) is one of the hallmarks of obesity and is proposed to contribute to insulin resistance and type 2 diabetes. Despite this, the causal mechanisms underlying WAT inflammation remain unclear. Based on metabolomic analyses of human WAT, Petrus et al. showed that the amino acid glutamine was the most markedly reduced polar metabolite in the obese state. Reduced glutamine levels in adipocytes induce an increase of Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) levels via induction of glycolysis and the hexosamine biosynthetic pathways. This promotes nuclear O-GlcNAcylation, a posttranslational modification that activates the transcription of pro-inflammatory genes. Conversely, glutamine supplementation in vitro and in vivo, reversed these effects. Altogether, dysregulation of intracellular glutamine metabolism in WAT establishes an epigenetic link between adipocytes and inflammation. This commentary discusses these findings and their possibly therapeutic relevance in relation to insulin resistance and type 2 diabetes.


Assuntos
Adipócitos/metabolismo , Glutamina/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Montagem e Desmontagem da Cromatina , Suscetibilidade a Doenças , Epigênese Genética , Glicólise , Humanos , Imunomodulação , Inflamação/etiologia , Inflamação/metabolismo , Resistência à Insulina , Metaboloma , Metabolômica/métodos , Obesidade/metabolismo
12.
Cell Metab ; 31(2): 375-390.e11, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31866443

RESUMO

While obesity and associated metabolic complications are linked to inflammation of white adipose tissue (WAT), the causal factors remain unclear. We hypothesized that the local metabolic environment could be an important determinant. To this end, we compared metabolites released from WAT of 81 obese and non-obese women. This identified glutamine to be downregulated in obesity and inversely associated with a pernicious WAT phenotype. Glutamine administration in vitro and in vivo attenuated both pro-inflammatory gene and protein levels in adipocytes and WAT and macrophage infiltration in WAT. Metabolomic and bioenergetic analyses in human adipocytes suggested that glutamine attenuated glycolysis and reduced uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) levels. UDP-GlcNAc is the substrate for the post-translational modification O-linked ß-N-acetylglucosamine (O-GlcNAc) mediated by the enzyme O-GlcNAc transferase. Functional studies in human adipocytes established a mechanistic link between reduced glutamine, O-GlcNAcylation of nuclear proteins, and a pro-inflammatory transcriptional response. Altogether, glutamine metabolism is linked to WAT inflammation in obesity.


Assuntos
Adipócitos , Tecido Adiposo Branco , Glutamina , Inflamação/metabolismo , Obesidade/metabolismo , Acetilglucosamina , Adipócitos/metabolismo , Adipócitos/patologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Adulto , Animais , Células Cultivadas , Estudos de Coortes , Feminino , Glucose/metabolismo , Glutamina/metabolismo , Glutamina/farmacologia , Glicosilação/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , N-Acetilglucosaminiltransferases/metabolismo
13.
Am J Physiol Endocrinol Metab ; 317(6): E1094-E1107, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31638854

RESUMO

Clinical and animal studies have reported an association between low birth weight and the development of nonalcoholic fatty liver disease (NAFLD) in offspring. Using a model of prenatal maternal 70% food restriction diet (FR30) in the rat, we previously showed that maternal undernutrition predisposes offspring to altered lipid metabolism in adipose tissue, especially on a high-fat (HF) diet. Here, using microarray-based expression profiling combined with metabolic, endocrine, biochemical, histological, and lipidomic approaches, we assessed whether FR30 procedure sensitizes adult male offspring to impaired lipid metabolism in the liver. No obvious differences were noted in the concentrations of triglycerides, cholesterol, and bile acids in the liver of 4-mo-old FR30 rats whichever postweaning diet was used. However, several clues suggest that offspring's lipid metabolism and steatosis are modified by maternal undernutrition. First, lipid composition was changed (i.e., higher total saturated fatty acids and lower elaidic acid) in the liver, whereas larger triglyceride droplets were observed in hepatocytes of undernourished rats. Second, FR30 offspring exhibited long-term impact on hepatic gene expression and lipid metabolism pathways on a chow diet. Although the transcriptome profile was globally modified by maternal undernutrition, cholesterol and bile acid biosynthesis pathways appear to be key targets, indicating that FR30 animals were predisposed to impaired hepatic cholesterol metabolism. Third, the FR30 protocol markedly modifies hepatic gene transcription profiles in undernourished offspring in response to postweaning HF. Overall, FR30 offspring may exhibit impaired metabolic flexibility, which does not enable them to properly cope with postweaning nutritional challenges influencing the development of nonalcoholic fatty liver.


Assuntos
Fígado Gorduroso/genética , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Desnutrição , Complicações na Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Animais , Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Feminino , Perfilação da Expressão Gênica , Hepatócitos/metabolismo , Hepatócitos/patologia , Gotículas Lipídicas/patologia , Fígado/patologia , Masculino , Ácidos Oleicos/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Fenômenos Fisiológicos da Nutrição Pré-Natal/genética , Ratos , Triglicerídeos/metabolismo
14.
Nutrients ; 11(5)2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31035463

RESUMO

According to the "developmental origins of health and disease" (DOHaD) concept, maternal obesity predisposes the offspring to non-communicable diseases in adulthood. While a preconceptional weight loss (WL) is recommended for obese women, its benefits on the offspring have been poorly addressed. We evaluated whether preconceptional WL was able to reverse the adverse effects of maternal obesity in a mouse model, exhibiting a modification of foetal growth and of the expression of genes encoding epigenetic modifiers in liver and placenta. We tracked metabolic and olfactory behavioural trajectories of offspring born to control, obese or WL mothers. After weaning, the offspring were either put on a control diet (CD) or a high-fat (HFD). After only few weeks of HFD, the offspring developed obesity, metabolic alterations and olfactory impairments, independently of maternal context. However, male offspring born to obese mother gained even more weight under HFD than their counterparts born to lean mothers. Preconceptional WL normalized the offspring metabolic phenotypes but had unexpected effects on olfactory performance: a reduction in olfactory sensitivity, along with a lack of fasting-induced, olfactory-based motivation. Our results confirm the benefits of maternal preconceptional WL for male offspring metabolic health but highlight some possible adverse outcomes on olfactory-based behaviours.


Assuntos
Metabolismo Energético/fisiologia , Obesidade/metabolismo , Olfato/fisiologia , Redução de Peso , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Fertilização , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mães , Gravidez
15.
Int J Obes (Lond) ; 43(12): 2381-2393, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30622312

RESUMO

OBJECTIVE: The lactation-suckling period is critical for white adipose tissue (WAT) development. Early postnatal nutrition influences later obesity risk but underlying mechanisms remain elusive. Here, we tested whether altered postnatal nutrition specifically during suckling impacts epigenetic regulation of key metabolic genes in WAT and alter long-term adiposity set point. METHODS: We analyzed the effects of maternal high-fat (HF) feeding in rats exclusively during lactation-suckling on breast milk composition and its impact on male offspring visceral epidydimal (eWAT) and subcutaneous inguinal (iWAT) depots during suckling and in adulthood. RESULTS: Maternal HF feeding during lactation had no effect on mothers' body weight (BW) or global breast milk composition, but induced qualitative changes in breast milk fatty acid (FA) composition (high n-6/n-3 polyunsaturated FA ratio and low medium-chain FA content). During suckling, HF neonates showed increased BW and mass of both eWAT and iWAT depot but only eWAT displayed an enhanced adipogenic transcriptional signature. In adulthood, HF offspring were predisposed to weight gain and showed increased hyperplastic growth only in eWAT. This specific eWAT expansion was associated with increased expression and activity of stearoyl-CoA desaturase-1 (SCD1), a key enzyme of FA metabolism. SCD1 converts saturated FAs, e.g. palmitate and stearate, to monounsaturated FAs, palmitoleate and oleate, which are the predominant substrates for triglyceride synthesis. Scd1 upregulation in eWAT was associated with reduced DNA methylation in Scd1 promoter surrounding a PPARγ-binding region. Conversely, changes in SCD1 levels and methylation were not observed in iWAT, coherent with a depot-specific programming. CONCLUSIONS: Our data reveal that maternal HF feeding during suckling programs long-term eWAT expansion in part by SCD1 epigenetic reprogramming. This programming events occurred with drastic changes in breast milk FA composition, suggesting that dietary FAs are key metabolic programming factors in the early postnatal period.


Assuntos
Tecido Adiposo Branco , Dieta Hiperlipídica , Epigênese Genética/genética , Lactação/genética , Estearoil-CoA Dessaturase , Tecido Adiposo Branco/química , Tecido Adiposo Branco/enzimologia , Tecido Adiposo Branco/metabolismo , Animais , Animais Recém-Nascidos , Peso Corporal/genética , Feminino , Gordura Intra-Abdominal/química , Gordura Intra-Abdominal/enzimologia , Gordura Intra-Abdominal/metabolismo , Masculino , Leite/química , Ratos Wistar , Estearoil-CoA Dessaturase/análise , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo
16.
Curr Genomics ; 20(6): 428-437, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32477000

RESUMO

According to the Developmental Origin of Health and Disease (DOHaD) concept, maternal obesity and the resulting accelerated growth in neonates predispose offspring to obesity and associated metabolic diseases that may persist across generations. In this context, the adipose tissue has emerged as an important player due to its involvement in metabolic health, and its high potential for plasticity and adaptation to environmental cues. Recent years have seen a growing interest in how maternal obesity induces long-lasting adipose tissue remodeling in offspring and how these modifications could be transmitted to subsequent generations in an inter- or transgenerational manner. In particular, epigenetic mechanisms are thought to be key players in the developmental programming of adipose tissue, which may partially mediate parts of the transgenerational inheritance of obesity. This review presents data supporting the role of maternal obesity in the developmental programming of adipose tissue through epigenetic mechanisms. Inter- and transgenerational effects on adipose tissue expansion are also discussed in this review.

17.
Cell Rep ; 25(3): 551-560.e5, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332637

RESUMO

White adipose tissue (WAT) mass is determined by adipocyte size and number. While adipocytes are continuously turned over, the mechanisms controlling fat cell number in WAT upon weight changes are unclear. Herein, prospective studies of human subcutaneous WAT demonstrate that weight gain increases both adipocyte size and number, but the latter remains unaltered after weight loss. Transcriptome analyses associate changes in adipocyte number with the expression of 79 genes. This gene set is enriched for growth factors, out of which one, transforming growth factor-ß3 (TGFß3), stimulates adipocyte progenitor proliferation, resulting in a higher number of cells undergoing differentiation in vitro. The relevance of these observations was corroborated in vivo where Tgfb3+/- mice, in comparison with wild-type littermates, display lower subcutaneous adipocyte progenitor proliferation, WAT hypertrophy, and glucose intolerance. TGFß3 is therefore a regulator of subcutaneous adipocyte number and may link WAT morphology to glucose metabolism.


Assuntos
Adipogenia , Tecido Adiposo Branco/patologia , Intolerância à Glucose/etiologia , Obesidade/complicações , Gordura Subcutânea/patologia , Fator de Crescimento Transformador beta3/fisiologia , Tecido Adiposo Branco/metabolismo , Adolescente , Animais , Estudos de Casos e Controles , Diferenciação Celular , Feminino , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estudos Prospectivos , Gordura Subcutânea/metabolismo
18.
Trends Endocrinol Metab ; 29(10): 675-685, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30104112

RESUMO

An adverse nutritional environment during the perinatal period increases the risk of adult-onset metabolic diseases, such as obesity, which may persist across generations. Adipose tissue (AT) from offspring of malnourished dams has been shown to display altered adipogenesis, lipogenesis, and adipokine expression, impaired thermogenesis, and low-grade inflammation. Although the exact mechanisms underlying these alterations remain unclear, epigenetic processes are believed to have an important role. In this review, we focus on epigenetic mechanisms in AT that may account for transgenerational dysregulation of adipocyte formation and adipose function. Understanding the complex interactions between maternal diet and epigenetic regulation of the AT in offspring may be valuable in improving preventive strategies against the obesity pandemic.


Assuntos
Adipogenia/fisiologia , Tecido Adiposo , Epigênese Genética/fisiologia , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Distúrbios Nutricionais/metabolismo , Complicações na Gravidez/metabolismo , Adipogenia/genética , Tecido Adiposo/embriologia , Tecido Adiposo/crescimento & desenvolvimento , Tecido Adiposo/metabolismo , Animais , Epigênese Genética/genética , Feminino , Humanos , Distúrbios Nutricionais/complicações , Distúrbios Nutricionais/etiologia , Distúrbios Nutricionais/genética , Gravidez
19.
FASEB J ; 32(5): 2768-2778, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29295860

RESUMO

According to the Developmental Origin of Health and Disease (DOHaD) concept, maternal obesity and accelerated growth in neonates program obesity later in life. White adipose tissue (WAT) has been the focus of developmental programming events, although underlying mechanisms remain elusive. In rodents, WAT development primarily occurs during lactation. We previously reported that adult rat offspring from dams fed a high-fat (HF) diet exhibited fat accumulation and decreased peroxisome proliferator-activated receptor γ (PPARγ) mRNA levels in WAT. We hypothesized that PPARγ down-regulation occurs via epigenetic malprogramming which takes place during adipogenesis. We therefore examined epigenetic modifications in the PPARγ1 and PPARγ2 promoters in perirenal (pWAT) and inguinal fat pads of HF offspring at weaning (postnatal d 21) and in adulthood. Postnatal d 21 is a period characterized by active epigenomic remodeling in the PPARγ2 promoter (DNA hypermethylation and depletion in active histone modification H3ac and H3K4me3) in pWAT, consistent with increased DNA methyltransferase and DNA methylation activities. Adult HF offspring exhibited sustained hypermethylation and histone modification H3ac of the PPARγ2 promoter in both deposits, correlated with persistent decreased PPARγ2 mRNA levels. Consistent with the DOHaD hypothesis, retained epigenetic marks provide a mechanistic basis for the cellular memory linking maternal obesity to a predisposition for later adiposity.-Lecoutre, S., Pourpe, C., Butruille, L., Marousez, L., Laborie, C., Guinez, C., Lesage, J., Vieau, D., Eeckhoute, J., Gabory, A., Oger, F., Eberlé, D., Breton, C. Reduced PPARγ2 expression in adipose tissue of male rat offspring from obese dams is associated with epigenetic modifications.


Assuntos
Tecido Adiposo/metabolismo , Metilação de DNA , Epigênese Genética , Obesidade/metabolismo , PPAR gama/biossíntese , Regiões Promotoras Genéticas , Tecido Adiposo/patologia , Adiposidade/genética , Animais , Feminino , Histonas/genética , Histonas/metabolismo , Masculino , Obesidade/genética , PPAR gama/genética , Processamento de Proteína Pós-Traducional , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Wistar
20.
Mol Metab ; 6(8): 922-930, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28752055

RESUMO

OBJECTIVE: According to the Developmental Origin of Health and Disease (DOHaD) concept, maternal obesity and accelerated growth in neonates predispose offspring to white adipose tissue (WAT) accumulation. In rodents, adipogenesis mainly develops during lactation. The mechanisms underlying the phenomenon known as developmental programming remain elusive. We previously reported that adult rat offspring from high-fat diet-fed dams (called HF) exhibited hypertrophic adipocyte, hyperleptinemia and increased leptin mRNA levels in a depot-specific manner. We hypothesized that leptin upregulation occurs via epigenetic malprogramming, which takes place early during development of WAT. METHODS: As a first step, we identified in silico two potential enhancers located upstream and downstream of the leptin transcription start site that exhibit strong dynamic epigenomic remodeling during adipocyte differentiation. We then focused on epigenetic modifications (methylation, hydroxymethylation, and histone modifications) of the promoter and the two potential enhancers regulating leptin gene expression in perirenal (pWAT) and inguinal (iWAT) fat pads of HF offspring during lactation (postnatal days 12 (PND12) and 21 (PND21)) and in adulthood. RESULTS: PND12 is an active period for epigenomic remodeling in both deposits especially in the upstream enhancer, consistent with leptin gene induction during adipogenesis. Unlike iWAT, some of these epigenetic marks were still observable in pWAT of weaned HF offspring. Retained marks were only visible in pWAT of 9-month-old HF rats that showed a persistent "expandable" phenotype. CONCLUSIONS: Consistent with the DOHaD hypothesis, persistent epigenetic remodeling occurs at regulatory regions especially within intergenic sequences, linked to higher leptin gene expression in adult HF offspring in a depot-specific manner.


Assuntos
Epigênese Genética , Leptina/genética , Obesidade/genética , Complicações na Gravidez/genética , Tecido Adiposo Branco/metabolismo , Animais , Metilação de DNA , Feminino , Código das Histonas , Leptina/metabolismo , Masculino , Gravidez , Ratos , Ratos Wistar , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...