RESUMO
This study aimed to determine the standardized ileal digestibility (SID) of calcium (Ca) and phosphorus (P) in various feed ingredients using the direct method. This study comprised eight experimental diets: a Ca-P-free diet and seven experimental diets, each containing monocalcium phosphate (MCP), dicalcium phosphate (DCP), monosodium phosphate (MSP) + limestone, corn, and soybean meal (SBM) as the sole sources of Ca and/or P. These diets provided 4.21 g/kg of non-phytate P from MCP, DCP, or MSP, and the MSP + limestone diet included 7.50 g/kg of Ca. The corn and SBM diets formulated to determine P digestibility maintained a dietary Ca/total P ratio of 1.4 through the addition of limestone. Chromic oxide was added to the diets as an indigestible index. On day 18, 256 male and 256 female broilers were individually weighed and randomly assigned to eight treatments, each with four replicates for each sex (eight birds per cage). This allocation followed a randomized complete block design based on body weight. On day 21, the birds were euthanized using carbon dioxide, and ileal digesta samples were collected from the distal two-thirds section of the ileum. No significant interactions between the experimental diets and sex regarding the SID of Ca or P were detected, and no effect of sex on the SID was observed. The standardized ileal Ca digestibility of MCP, DCP, limestone, corn, and SBM was found to be 84.7%, 70.1%, 52.6%, 88.6%, and 81.6%, respectively. The standardized ileal P digestibility of MCP, DCP, MSP, corn, and SBM was determined to be 91.8%, 76.8%, 94.4%, 73.1, and 88.4%, respectively. Given the variable digestibility of Ca and P across different feed ingredients, the consideration of the specific type of ingredients used in diet formulation is crucial.
RESUMO
In the development of new organic crystals for nonlinear optical and terahertz (THz) applications, it is very challenging to achieve the essentially required non-centrosymmetric molecular arrangement. Moreover, the resulting crystal structure is mostly unpredictable due to highly dipolar molecular components with complex functional substituents. In this work, new organic salt crystals with top-level macroscopic optical nonlinearity by controlling the van der Waals volume (VvdW ), rather than by trial and error, are logically designed. When the VvdW of molecular ionic components varies, the corresponding crystal symmetry shows an observable trend: change from centrosymmetric to non-centrosymmetric and back to centrosymmetric. All non-centrosymmetric crystals exhibit an isomorphic P1 crystal structure with an excellent macroscopic second-order nonlinear optical response. Apart from the top-level macroscopic optical nonlinearity, new organic crystals introducing highly electronegative fluorinated substituents with strong secondary bonding ability show excellent performance in efficient and broadband THz wave generation, high crystal density, high thermal stability, and good bulk crystal growth ability.
RESUMO
BACKGROUND: Small cell lung cancer (SCLC) has an exceptionally poor prognosis; as most of the cases are initially diagnosed as extensive disease with hematogenous metastasis. Therefore, the early diagnosis of SCLC is very important and may improve its prognosis. METHODS: To investigate the feasibility of early diagnosis of SCLC, we examined exosomal microRNAs (miRNAs) present in serum obtained from patients with SCLC. First, exosomes were isolated in serum from patients with SCLC and healthy individuals and were characterized using particle size and protein markers. Additionally, miRNA array was performed to define SCLC-specific exosomal miRNAs. Second, the obtained miRNAs were further validated employing a large cohort. Finally, the ability to diagnose SCLC was estimated by area under the curve (AUC), and intracellular mRNA change patterns were verified through validated miRNAs. RESULTS: From the miRNA array results, we selected 51-miRNAs based on p-values and top 10 differentially expressed genes, and 25-miRNAs were validated using quantitative reverse transcription-polymerase chain reaction. The 25-miRNAs were further validated employing a large cohort. Among them, 7-miRNAs showed significant differences. Furthermore, 6-miRNAs (miR-3565, miR-3124-5p, miR-200b-3p, miR-6515, miR-3126-3p and miR-9-5p) were up-regulated and 1-miRNA (miR-92b-5p) was down-regulated. The AUC value of each miRNA sets between 0.64 and 0.76, however the combined application of 3-miRNAs (miR-200b-3p, miR-3124-5p and miR-92b-5p) remarkably improved the diagnostic value (AUC = 0.93). Gene ontology analysis revealed that the 3-miRNA panel is linked to various oncogene pathways and nervous system development. When the 3-miRNAs were introduced to cells, the resulting changes in total mRNA expression strongly indicated the presence of lung diseases, including lung cancer. In addition, the 3-miRNA panel was significantly associated with a poorer prognosis, although individual miRNAs have not been validated as prognostic markers. CONCLUSION: Our study identified SCLC-specific exosomal miRNAs, and the 3-miRNAs panel (miR-200b-3p, miR-3124-5p and miR-92b-5p) may serve as a diagnostic and prognostic marker for SCLC.
RESUMO
This study aimed to evaluate the effects of dietary Chlorella vulgaris (CV) on the distribution of immune cells, intestinal morphology, intestinal barrier function, antioxidant markers, and the cecal microbiome in 10-day-old broiler chickens. A total of 120 day-old Ross 308 male broiler chicks were assigned to two dietary treatments using a randomized complete block design, with body weight as the blocking factor. Birds fed a diet containing CV showed an increase in CD4+ T cells (p < 0.05) compared to those fed the control diet. The relative mRNA expression of intestinal epithelial barrier function-related markers (occludin and avian ß-defensin 5) was elevated (p < 0.05) in the CV-supplemented group compared to the control group. The alpha diversity indices (Chao1 and observed features) of the cecal microbiome in 10-day-old birds increased (p < 0.05), indicating higher richness within the cecal bacterial community. In the microbiome analysis, enriched genera abundance of Clostridium ASF356 and Coriobacteriaceae CHKCI002 was observed in birds fed the diet containing CV compared to those fed the control diet. Taken together, dietary CV supplementation might alter intestinal barrier function, immunity, and microbiomes in 10-day-old broiler chickens.
RESUMO
BACKGROUND: Little is known about the adverse events (AEs) associated with coronavirus disease 2019 (COVID-19) vaccination in patients with type 2 diabetes mellitus (T2DM). METHODS: This study used vaccine AE reporting system data to investigate severe AEs among vaccinated patients with T2DM. A natural language processing algorithm was applied to identify people with and without diabetes. After 1:3 matching, we collected data for 6,829 patients with T2DM and 20,487 healthy controls. Multiple logistic regression analysis was used to calculate the odds ratio for severe AEs. RESULTS: After COVID-19 vaccination, patients with T2DM were more likely to experience eight severe AEs than controls: cerebral venous sinus thrombosis, encephalitis myelitis encephalomyelitis, Bell's palsy, lymphadenopathy, ischemic stroke, deep vein thrombosis (DVT), thrombocytopenia (TP), and pulmonary embolism (PE). Moreover, patients with T2DM vaccinated with BNT162b2 and mRNA-1273 were more vulnerable to DVT and TP than those vaccinated with JNJ-78436735. Among patients with T2DM administered mRNA vaccines, mRNA-1273 was safer than BNT162b2 in terms of the risk of DVT and PE. CONCLUSION: Careful monitoring of severe AEs in patients with T2DM may be necessary, especially for those related to thrombotic events and neurological dysfunctions after COVID-19 vaccination.
Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Humanos , Vacinas contra COVID-19/efeitos adversos , Diabetes Mellitus Tipo 2/complicações , Vacina BNT162 , Vacina de mRNA-1273 contra 2019-nCoV , Ad26COVS1 , COVID-19/prevenção & controle , Análise de DadosRESUMO
Drugs produce pharmaceutical and adverse effects that arise from the complex relationship between drug targets and signatures; by considering such relationships, we can begin to understand the cellular mechanisms of drugs. In this study, we selected 463 genes from the DSigDB database corresponding to targets and signatures for 382 FDA-approved drugs with both protein binding information for a drug-target score (KDTN, i.e., the degree to which the protein encoded by the gene binds to a number of drugs) and microarray signature information for a drug-sensitive score (KDSN, i.e., the degree to which gene expression is stimulated by the drug). Accordingly, we constructed two drug-gene bipartite network models, a drug-target network and drug-signature network, which were merged into a multidimensional model. Analysis revealed that the KDTN and KDSN were in mutually exclusive and reciprocal relationships in terms of their biological network structure and gene function. A symmetric balance between the KDTN and KDSN of genes facilitates the possibility of therapeutic drug effects in whole genome. These results provide new insights into the relationship between drugs and genes, specifically drug targets and drug signatures.
Assuntos
Sistemas de Liberação de Medicamentos , Redes Reguladoras de Genes , Genoma , Bases de Dados FactuaisRESUMO
Although epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) have shown dramatic response and improvement in treating lung cancer with mutant EGFR, the emergence of drug resistance remains a major problem. In particular, some mutations including T790 M and C797S have been recognized as mechanisms of acquired resistance because they weaken binding affinity to drugs. To date, many attempts have been made to develop a new drug for overcoming acquired resistance to EGFR-TKIs, including secondary mutations. However, an appropriate animal model to evaluate in vivo efficacy during novel drug development remains lacking. In this study, we generated a novel transgenic mouse model that conditionally expresses human EGFRL858R/T790M/C797S and firefly luciferase using Cas9-mediated homology-independent targeted integration. Using a lung-specific Sftpc-CreERT2 mouse line, we induced expression of both the human EGFRL858R/T790M/C797S transgene and firefly luciferase in the lungs of adult mice. The expression of these genes and lung cancer occurrence was monitored using an in vivo imaging system and magnetic resonance imaging, respectively. Overall, our mouse model can be utilized to develop new drugs for overcoming C797S-mediated resistance to osimertinib; further, such knock-in systems for expressing oncogenes may be applied to study tumorigenesis and the development of other targeted agents.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Compostos de Anilina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Luciferases de Vaga-Lume/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Modelos Animais de DoençasRESUMO
Osimertinib is an irreversible third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) that was initially developed to overcome the EGFR T790M mutation and is used as a standard therapy in patients with advanced non-small cell lung cancer (NSCLC) with EGFR-activating mutations. Despite the remarkable initial efficacy, osimertinib, like other EGFR-TKIs, is limited by the emergence of acquired resistance. As the EGFR mutation C797S has been identified as a key driver of acquired resistance to osimertinib, development of a drug that targets this clinically relevant mutation could help improve patient outcomes. Here, we report the discovery and preclinical efficacy of OBX02-011, a reversible fourth-generation EGFR TKI that overcomes the EGFR C797S mutation. Compared to approved EGFR TKIs, OBX02-011 showed potent anticancer effects and inhibited EGFR-related signaling in various models, including those harboring the EGFR C797S mutation. Additionally, in transgenic mouse models (EGFRL858R/T790M/C797S), OBX02-011 treatment effectively inhibited tumor growth and EGFR activity, leading to enhanced survival. Collectively, these results suggest that OBX02-011 may be a promising new EGFR TKI to overcome C797S-mediated resistance in NSCLC.
RESUMO
Background and Aims: The utility of clinical information from esophagogastroduodenoscopy (EGD) reports has been limited because of its unstructured narrative format. We developed a natural language processing (NLP) pipeline that automatically extracts information about gastric diseases from unstructured EGD reports and demonstrated its applicability in clinical research. Methods: An NLP pipeline was developed using 2000 EGD and associated pathology reports that were retrieved from a single healthcare center. The pipeline extracted clinical information, including the presence, location, and size, for 10 gastric diseases from the EGD reports. It was validated with 1000 EGD reports by evaluating sensitivity, positive predictive value (PPV), accuracy, and F1 score. The pipeline was applied to 248,966 EGD reports from 2010-2019 to identify patient demographics and clinical information for 10 gastric diseases. Results: For gastritis information extraction, we achieved an overall sensitivity, PPV, accuracy, and F1 score of 0.966, 0.972, 0.996, and 0.967, respectively. Other gastric diseases, such as ulcers, and neoplastic diseases achieved an overall sensitivity, PPV, accuracy, and F1 score of 0.975, 0.982, 0.999, and 0.978, respectively. The study of EGD data of over 10 years revealed the demographics of patients with gastric diseases by sex and age. In addition, the study identified the extent and locations of gastritis and other gastric diseases, respectively. Conclusions: We demonstrated the feasibility of the NLP pipeline providing an automated extraction of gastric disease information from EGD reports. Incorporating the pipeline can facilitate large-scale clinical research to better understand gastric diseases.
RESUMO
A COVID-19 vaccine BNT162b2 (Pfizer-BioNTech) has recently been authorized for adolescents in the US. However, the impact of adverse events on adolescents after vaccination has not been fully investigated. To assess the safety of the COVID-19 vaccine in adolescents, the incidence of adverse events (AEs) in adolescents and adults was compared after vaccination. We included 6304 adolescents (68.14 per 100,000 people) who reported adverse events using vaccine adverse event reporting system (VAERS) data from 10 May 2021 to 30 September 2021. The mean age was 13.6 ± 1.1 years and women (52.7%) outnumbered men. We analyzed severe and common adverse events in response to the COVID-19 vaccine among 6304 adolescents (68.14 per 100,000 people; 52% female; mean age, 13.6 ± 1.1 years). The risk of myocarditis or pericarditis among adolescents was significantly higher in men than in women (OR = 6.61, 95% CI = 4.43 to 9.88; p < 0.001), with a higher frequency after the second dose of the vaccine (OR = 8.52, 95% CI = 5.79 to 12.54; p < 0.001). In addition, severe adverse events such as multisystem inflammatory syndromes, where the incidence rate per 100,000 people was 0.11 (n = 10), and the relative risk was 244.3 (95% CI = 31.27 to 1908.38; p < 0.001), were significantly higher in adolescents than in adults. The risk of the inflammatory response to the COVID-19 vaccine, including myocarditis, pericarditis, or multisystem inflammatory syndromes, was significantly higher in men than in women, with a higher frequency in adolescents than in adults. The inflammation-related AEs may require close monitoring and management in adolescents.
RESUMO
Tomentosin, one of natural sesquiterpene lactones sourced from Inula viscosa L., exerts therapeutic effects in various cell types. Here, we investigated the antioxidant activities and the underlying action mechanisms of tomentosin in HaCaT cells (a human keratinocyte cell line). Specifically, we examined the involvement of tomentosin in aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways. Treatment with tomentosin for up to 60 min triggered the production of reactive oxygen species (ROS), whereas treatment for 4 h or longer decreased ROS production. Tomentosin treatment also induced the nuclear translocation of Nrf2 and upregulated the expression of Nrf2 and its target genes. These data indicate that tomentosin induces ROS production at an early stage which activates the Nrf2 pathway by disrupting the Nrf2-Keap1 complex. However, at a later stage, ROS levels were reduced by tomentosin-induced upregulation of antioxidant genes. In addition, tomentosin induced the phosphorylation of mitogen-activated protein kinases (MAPKs) including p38 MAPK and c-Jun N-terminal kinase (JNK). SB203580 (a p38 MAPK inhibitor) and SP600125 (a JNK inhibitor) attenuated the tomentosin-induced phosphorylation of Nrf2, suggesting that JNK and p38 MAPK signaling pathways can contribute to the tomentosin-induced Nrf2 activation through phosphorylation of Nrf2. Furthermore, N-acetyl-L-cysteine (NAC) treatment blocked both tomentosin-induced production of ROS and the nuclear translocation of Nrf2. These data suggest that tomentosin-induced Nrf2 signaling is mediated both by tomentosin-induced ROS production and the activation of p38 MAPK and JNK. Moreover, tomentosin inhibited the AhR signaling pathway, as evidenced by the suppression of xenobiotic-response element (XRE) reporter activity and the translocation of AhR into nucleus induced by urban pollutants, especially benzo[a]pyrene. These findings suggest that tomentosin can ameliorate skin damage induced by environmental pollutants.
RESUMO
Two mRNA COVID-19 vaccines (mRNA-1273, Moderna; and BNT162b2, Pfizer-BioNTech) and one viral vector vaccine (JNJ-78436735, Janssen/Johnson and Johnson) are authorized in the US to hinder COVID-19 infections. We analyzed severe and common adverse events in response to COVID-19 vaccines using real-world, Vaccine Adverse Effect Reporting System (VAERS) data. From 14 December 2020 to 30 September 2021, 481,172 (50.7 ± 17.5 years, males 27.89%, 12.35 per 100,000 people) individuals reported adverse events (AEs). The median time to severe AEs was 2 days after injection. The risk of severe AEs following the one viral vector vaccine (OR = 1.044, 95% CI = 1.005-1.086) was significantly higher than that after the two mRNA vaccines, and the risk among males (OR = 1.374, 95% CI = 1.342-1.406) was higher than among females, except for anaphylaxis. For common AEs, however, the risk to males (OR = 0.621, 95% CI = 0.612-0.63) was lower than to females. In conclusion, we provided medical insight and clinical guidance about vaccine types by characterizing AEs using real-world data. In particular, COVID-19 mRNA vaccines are safer than viral vector vaccines with regard to coagulation disorders, whereas inflammation-related AEs are lower in the viral vaccine. The risk-benefit ratio of vaccines should be carefully considered, and close monitoring and management of severe AEs is needed.
RESUMO
The recent pandemic of coronavirus disease 2019 (COVID-19) has increased demand for chemical disinfectants, which can be potentially hazardous to users. Here, we suggest that the cell-free supernatant from Lactobacillus plantarum NIBR97, including novel bacteriocins, has potential as a natural alternative to chemical disinfectants. It exhibits significant antibacterial activities against a broad range of pathogens, and was observed by scanning electron microscopy (SEM) to cause cellular lysis through pore formation in bacterial membranes, implying that its antibacterial activity may be mediated by peptides or proteins and supported by proteinase K treatment. It also showed significant antiviral activities against HIV-based lentivirus and influenza A/H3N2, causing lentiviral lysis through envelope collapse. Furthermore, whole-genome sequencing revealed that NIBR97 has diverse antimicrobial peptides, and among them are five novel bacteriocins, designated as plantaricin 1 to 5. Plantaricin 3 and 5 in particular showed both antibacterial and antiviral activities. SEM revealed that plantaricin 3 causes direct damage to both bacterial membranes and viral envelopes, while plantaricin 5 damaged only bacterial membranes, implying different antiviral mechanisms. Our data suggest that the cell-free supernatant from L. plantarum NIBR97, including novel bacteriocins, is potentially useful as a natural alternative to chemical disinfectants.
RESUMO
Patient-derived xenografts (PDXs) can represent the heterogeneity and histological characteristics of tumors and are thus useful for testing the efficacy of anti-cancer drugs; however, PDXs are difficult to generate, especially for gastrointestinal stromal tumor (GIST). We analyzed the clinicopathologic factors associated with the successful establishment of GIST PDX in NOD.Cg-Prkdcscid IL2rgtm1Wjl/SzJ mice. We used 185 GIST tumor fragments from patients who underwent surgical resection prior to (n = 66; 35.7%) and after treatment (n = 119; 64.3%) with tyrosine kinase inhibitors. The overall success rate of PDX establishment was 17%; in univariate analysis, engraftment success was associated with after TKI treatment, larger tumor size, higher mitotic count, higher Ki-67 index, higher cellularity, presence of tumor necrosis, primary mutations in KIT exon 11, and originating from metastatic lesions. In multivariate analysis, higher Ki-67 index, after TKI treatment, and larger tumor size were independent factors for engraftment success. Immunohistochemistry in representative samples further corroborated the above results. These results will be useful in the establishment of PDX models from GISTs.
Assuntos
Modelos Animais de Doenças , Tumores do Estroma Gastrointestinal/patologia , Xenoenxertos , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biópsia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Carga TumoralRESUMO
BACKGROUND: In the past 20 years, various methods have been introduced to construct disease networks. However, established disease networks have not been clinically useful to date because of differences among demographic factors, as well as the temporal order and intensity among disease-disease associations. OBJECTIVE: This study sought to investigate the overall patterns of the associations among diseases; network properties, such as clustering, degree, and strength; and the relationship between the structure of disease networks and demographic factors. METHODS: We used National Health Insurance Service-National Sample Cohort (NHIS-NSC) data from the Republic of Korea, which included the time series insurance information of 1 million out of 50 million Korean (approximately 2%) patients obtained between 2002 and 2013. After setting the observation and outcome periods, we selected only 520 common Korean Classification of Disease, sixth revision codes that were the most prevalent diagnoses, making up approximately 80% of the cases, for statistical validity. Using these data, we constructed a directional and weighted temporal network that considered both demographic factors and network properties. RESULTS: Our disease network contained 294 nodes and 3085 edges, a relative risk value of more than 4, and a false discovery rate-adjusted P value of <.001. Interestingly, our network presented four large clusters. Analysis of the network topology revealed a stronger correlation between in-strength and out-strength than between in-degree and out-degree. Further, the mean age of each disease population was related to the position along the regression line of the out/in-strength plot. Conversely, clustering analysis suggested that our network boasted four large clusters with different sex, age, and disease categories. CONCLUSIONS: We constructed a directional and weighted disease network visualizing demographic factors. Our proposed disease network model is expected to be a valuable tool for use by early clinical researchers seeking to explore the relationships among diseases in the future.
Assuntos
Redes Comunitárias/normas , Estudos de Coortes , Análise de Dados , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Tumor-derived exosomes (TEXs) contain enriched miRNAs that act as novel non-invasive biomarkers for cancer diagnosis and play a role in cancer progression. We investigated the exosomal miRNAs that affect cancer progression in non-small cell lung cancer (NSCLC) and identified the specific molecules involved. We identified that specific miRNAs in NSCLC cell-released exosomes can modulate angiogenesis, among which miR-619-5p was the most potent inducer. RCAN1.4 was identified as a target of miR-619-5p and its suppression promoted angiogenesis. Furthermore, the suppression of RCAN1.4 induced cell proliferation and metastasis in NSCLC cells. In patients with NSCLC, the level of RCAN1.4 expression was significantly lower, and that of miR-619-5p significantly higher, in tumor than normal lung tissues. miR-619-5p expression was higher than normal in exosomes isolated from the plasma of NSCLC patients. Finally, hypoxic conditions induced miR-619-5p upload into NSCLC cell-derived exosomes. Our findings indicate that exosomal miR-619-5p promotes the growth and metastasis of NSCLCs by regulating RCAN1.4 and can serve as a diagnostic indicator for these lung cancers.
Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/secundário , Proteínas de Ligação a DNA/metabolismo , Exossomos/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Proteínas Musculares/metabolismo , Neovascularização Patológica/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/irrigação sanguínea , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Movimento Celular , Proliferação de Células , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos SCID , Proteínas Musculares/genética , Prognóstico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
OBJECTIVE: To investigate the clinical significance of MET gene amplification in patients with gastric cancer in the palliative setting. METHODS: MET amplification was assessed using fluorescence in situ hybridization (FISH) in 50 patients and quantitative polymerase chain reaction (qPCR) in 326 patients; 259 patients treated with first-line fluoropyrimidine and platinum were included for survival analysis. RESULTS: The results of FISH and qPCR indicated that the c-MET/CEP7 ratio was correlated with gene copy number. The optimal cutoff value for the copy number using qPCR to detect MET gene amplification with FISH was 5 (κ=0.778, P<0.001). Twenty-one out of 326 patients (6.4%) were identified asMET amplification with a copy number of >5 detected by qPCR. MET-amplified gastric cancer was associated with an Eastern Cooperative Oncology Group (ECOG) performance status (PS) score of ≥2 (33.3% vs. 10.5% P=0.007), peritoneal metastasis (76.2% vs. 46.2%, P=0.008), and elevated bilirubin levels (28.6% vs. 7.3%, P=0.006). The median overall survival (OS) and progression-free survival (PFS) were 11.9 and 5.6 months, respectively. MET-amplified gastric cancer was not associated with survival outcomes [hazard ratio (HR)=0.68, 95% confidence interval (95% CI): 0.35-1.32, P=0.254 for PFS; HR=0.68, 95% CI: 0.35-1.32, P=0.251 for OS]. CONCLUSIONS: qPCR can be used to detect MET gene amplification. MET amplification was not a predictor of poor prognosis in patients with metastatic or unresectable gastric cancer.
RESUMO
Gastrointestinal stromal tumors (GISTs) with KIT or platelet-derived growth factor receptor alpha (PDGFRa) oncogenic driver gene mutations, respond to tyrosine kinase inhibitors (TKIs) including imatinib, sunitinib, and regorafenib. However, most patients develop TKI resistance; therefore, novel agents are required. We established three TKI-resistant GIST patient-derived xenograft (PDX) models for effective drug development. These were PDX models harboring primary and secondary KIT and additional mutations; KIT exon 11 (p.Y570_L576del), KIT exon 17 (p.D816E), and PTEN (p.T321fs) mutations in GIST-RX1 from a patient who was unresponsive to imatinib, sunitinib, and sorafenib, and KIT exon 11 (p.K550_splice) and KIT exon 14 (p.T670I) mutations in GIST-RX2 and KIT exon 9 (p.502_503insYA) and KIT exon 17 (p.D820E) mutations in GIST-RX4 from patients with imatinib and imatinib/sunitinib resistance, respectively. The histological features and mutation statuses of GIST PDXs were consistent with those of the original patient tumors, and the models showed TKI sensitivity comparable to clinical responses. Imatinib inhibited the KIT pathway in imatinib-sensitive GIST-T1 but not GIST-RX1, RX2, and RX4. These GIST PDX models will be useful for studying TKI resistance mechanisms and evaluating novel targeted agents in GIST.