Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 60(11): 6212-6226, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37436602

RESUMO

Cognitive impairment refers to notable declines in cognitive abilities including memory, language, and emotional stability leading to the inability to accomplish essential activities of daily living. Astrocytes play an important role in cognitive function, and homeostasis of the astrocyte-neuron lactate shuttle (ANLS) system is essential for maintaining cognitive functions. Aquaporin-4 (AQP-4) is a water channel expressed in astrocytes and has been shown to be associated with various brain disorders, but the direct relationship between learning, memory, and AQP-4 is unclear. We examined the relationship between AQP-4 and cognitive functions related to learning and memory. Mice with genetic deletion of AQP-4 showed significant behavioral and emotional changes including hyperactivity and instability, and impaired cognitive functions such as spatial learning and memory retention. 18 F-FDG PET imaging showed significant metabolic changes in the brains of AQP-4 knockout mice such as reductions in glucose absorption. Such metabolic changes in the brain seemed to be the direct results of changes in the expression of metabolite transporters, as the mRNA levels of multiple glucose and lactate transporters in astrocytes and neurons were significantly decreased in the cortex and hippocampus of AQP-4 knockout mice. Indeed, AQP-4 knockout mice showed significantly higher accumulation of both glucose and lactate in their brains compared with wild-type mice. Our results show that the deficiency of AQP-4 can cause problems in the metabolic function of astrocytes and lead to cognitive impairment, and that the deficiency of AQP4 in astrocyte endfeet can cause abnormalities in the ANLS system.


Assuntos
Aquaporina 4 , Disfunção Cognitiva , Ácido Láctico , Animais , Humanos , Camundongos , Aquaporina 4/genética , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Disfunção Cognitiva/metabolismo , Glucose/metabolismo , Ácido Láctico/metabolismo , Camundongos Knockout , Neurônios/metabolismo
2.
J Transl Med ; 21(1): 69, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732815

RESUMO

BACKGROUND: Recurrence is common in glioblastoma multiforme (GBM) because of the infiltrative, residual cells in the tumor margin. Standard therapy for GBM consists of surgical resection followed by chemotherapy and radiotherapy, but the median survival of GBM patients remains poor (~ 1.5 years). For recurrent GBM, anti-angiogenic treatment is one of the common treatment approaches. However, current anti-angiogenic treatment modalities are not satisfactory because of the resistance to anti-angiogenic agents in some patients. Therefore, we sought to identify novel prognostic biomarkers that can predict the therapeutic response to anti-angiogenic agents in patients with recurrent glioblastoma. METHODS: We selected patients with recurrent GBM who were treated with anti-angiogenic agents and classified them into responders and non-responders to anti-angiogenic therapy. Then, we performed proteomic analysis using liquid-chromatography mass spectrometry (LC-MS) with formalin-fixed paraffin-embedded (FFPE) tissues obtained from surgical specimens. We conducted a gene-ontology (GO) analysis based on protein abundance in the responder and non-responder groups. Based on the LC-MS and GO analysis results, we identified potential predictive biomarkers for anti-angiogenic therapy and validated them in recurrent glioblastoma patients. RESULTS: In the mass spectrometry-based approach, 4957 unique proteins were quantified with high confidence across clinical parameters. Unsupervised clustering analysis highlighted distinct proteomic patterns (n = 269 proteins) between responders and non-responders. The GO term enrichment analysis revealed a cluster of genes related to immune cell-related pathways (e.g., TMEM173, FADD, CD99) in the responder group, whereas the non-responder group had a high expression of genes related to nuclear replisome (POLD) and damaged DNA binding (ERCC2). Immunohistochemistry of these biomarkers showed that the expression levels of TMEM173 and FADD were significantly associated with the overall survival and progression-free survival of patients with recurrent GBM. CONCLUSIONS: The candidate biomarkers identified in our protein analysis may be useful for predicting the clinical response to anti-angiogenic agents in patients with recurred GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Proteômica , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Recidiva Local de Neoplasia/genética , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Biomarcadores , Proteína Grupo D do Xeroderma Pigmentoso
3.
Anat Rec (Hoboken) ; 306(4): 905-917, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36583474

RESUMO

A recent report suggested that LIM homeobox 6 (Lhx6) + GABA-releasing neurons of the ventral zona incerta (VZI) promote sleep, particularly paradoxical sleep (PS). While their potential involvement in sleep still needs to be firmly confirmed, little is known about their specific input/output connections with widespread brain regions, including those involved in sleep. Thus, the present study was designed to examine whether Lhx6-expressing neurons (in parallel to intermingled MCH-expressing ones) may send efferent projections to cholinergic and/or monoaminergic nuclei from basal forebrain (BF) to brainstem (BS). Based on the present observations, the proportions of Lhx6+ neuronal projection to the BF and BS cholinergic nuclei over the total number of Lhx6+ VZI cells were approximately 5.9% and 6.9%, respectively. Likewise, the proportions of Lhx6+ neuronal projection to the dorsal raphe and locus coeruleus over the total number of Lhx6+ VZI cells were about 4.3% and 3.9%, respectively. In addition, Lhx6+ cells projecting to the cholinergic or monoaminergic nuclei were scattered along the entire dorsal-to-ventral extent of the VZI. Based on the present as well as our previous observations, it is suggested that Lhx6+ VZI neurons might play an important role in the regulation of PS, partly via the neural network involving the cholinergic as well as monoaminergic nuclei of the rat.


Assuntos
Zona Incerta , Ratos , Animais , Genes Homeobox , Tronco Encefálico/fisiologia , Neurônios GABAérgicos , Colinérgicos
4.
Neurotherapeutics ; 18(4): 2692-2706, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34545550

RESUMO

In intracerebral hemorrhage (ICH), delayed secondary neural damages largely occur from perihematomal edema (PHE) resulting from the disruption of the blood-brain barrier (BBB). PHE is often considered the principal cause of morbidity and mortality in patients with ICH. Nevertheless, the main cellular mechanism as well as the specific BBB component involved in the formation of PHE after ICH remains elusive. Herein, we evaluated the role of AQP4, a water channel expressed on the astrocytes of the BBB, in the formation of PHE in ICH. The static and dynamic functions of the BBB were evaluated by analyzing the microstructure and leakage assay. Protein changes in the PHE lesion were analyzed and the control mechanism of AQP4 expression by reactive oxygen species was also investigated. Delayed PHE formation due to BBB disruption after ICH was confirmed by the decreased coverage of multiple BBB components and increased dynamic leakages. Microstructure assay showed that among the BBB components, AQP4 showed a markedly decreased expression in the PHE lesions. The decrease in AQP4 was due to microenvironmental ROS derived from the hemorrhage and was restored by treatment with ROS scavenger. AQP4-deficient mice had significantly larger PHE lesions and unfavorable survival outcomes compared with wild-type mice. Our data identify AQP4 as a specific BBB-modulating target for alleviating PHE in ICH. Further comprehensive studies are needed to form the preclinical basis for the use of AQP4 enhancers as BBB modulators for preventing delayed cerebral edema after ICH.


Assuntos
Aquaporina 4 , Barreira Hematoencefálica , Animais , Barreira Hematoencefálica/metabolismo , Hemorragia Cerebral/tratamento farmacológico , Edema , Humanos , Camundongos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...