Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(7): 8791-8801, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38324918

RESUMO

Vanadium redox flow batteries (VRFBs) have emerged as promising solutions for stationary grid energy storage due to their high efficiency, scalability, safety, near room-temperature operation conditions, and the ability to independently size power and energy capacities. The performance of VRFBs heavily relies on the redox couple reactions of V2+/V3+ and VO2+/VO2+ on carbon electrodes. Therefore, a thorough understanding of the surface functionality of carbon electrodes and their propensity for degradation during electrochemical cycles is crucial for designing VRFBs with extended lifespans. In this study, we present a coupled experimental-theoretical approach based on carbon K edge X-ray absorption spectroscopy (XAS) to characterize carbon electrodes prepared under different conditions and identify relevant functional groups that contribute to unique spectroscopic features. Atomic models were created to represent functional groups, such as hydroxyl, carboxyl, methyl, and aldehyde, bonded to carbon atoms in either sp2 or sp3 environments. The interactions between functionalized carbon and various solvated vanadium complexes were modeled using density functional theory. A library of carbon K-edge XAS spectra was generated for distinct carbon atoms in different functional groups, both before and after interacting with solvated vanadium complexes. We demonstrate how these simulated spectra can be used to deconvolve ex situ experimental spectra measured from carbon electrodes and to track changes in the electrode composition following immersion in different electrolytes or extended cycling within a functional VRFB. By doing so, we identify the active species present on the carbon electrodes, which play a crucial role in determining their electrochemical performance.

2.
Nat Chem ; 14(12): 1357-1366, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36050378

RESUMO

The synthesis and study of radioactive compounds are both inherently limited by their toxicity, cost and isotope scarcity. Traditional methods using small inorganic or organic complexes typically require milligrams of sample-per attempt-which for some isotopes is equivalent to the world's annual supply. Here we demonstrate that polyoxometalates (POMs) enable the facile formation, crystallization, handling and detailed characterization of metal-ligand complexes from microgram quantities owing to their high molecular weight and controllable solubility properties. Three curium-POM complexes were prepared, using just 1-10 µg per synthesis of the rare isotope 248Cm3+, and characterized by single-crystal X-ray diffraction, showing an eight-coordinated Cm3+ centre. Moreover, spectrophotometric, fluorescence, NMR and Raman analyses of several f-block element-POM complexes, including 243Am3+ and 248Cm3+, showed otherwise unnoticeable differences between their solution versus solid-state chemistry, and actinide versus lanthanide behaviour. This POM-driven strategy represents a viable path to isolate even rarer complexes, notably with actinium or transcalifornium elements.


Assuntos
Complexos de Coordenação , Ligantes , Ânions , Cristalografia por Raios X , Isótopos
3.
RSC Adv ; 12(6): 3721-3728, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35425363

RESUMO

Exceptionally coercive SmCo5 particles are produced through calcium vapor reduction of SmCo5O9 powders synthesized by flame spray pyrolysis. The resulting powders are composed of oblate hexagonal particles approximately 2 microns across with smooth surfaces. This microstructure yields record-breaking room temperature coercivity H c,i >80 kOe, or >60 kOe when combined with advanced manufacturing approaches such as electrophoretic deposition or molding with tetraglyme inks. These techniques enable straightforward low-loss fabrication of bulk parts. The high coercivity is extremely robust at elevated temperatures, exceeding 10 kOe even at 600 °C. The oxide precursor approach removes the need for strict environmental control during synthesis that is common to other nanoparticle-based routes and can readily be scaled to kilogram quantities of feedstock production. Magnet powders produced by calcium vapor reduction can thus function as the building blocks for traditional or advanced manufacturing techniques, while the high coercivity enables consistent performance across a wide range of temperatures.

4.
ACS Appl Mater Interfaces ; 14(18): 20430-20442, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35319201

RESUMO

Solid-state hydrogen storage materials often operate via transient, multistep chemical reactions at complex interfaces that are difficult to capture. Here, we use direct ab initio molecular dynamics simulations at accelerated temperatures and hydrogen pressures to probe the hydrogenation chemistry of the candidate material MgB2 without a priori assumption of reaction pathways. Focusing on highly reactive (101̅0) edge planes where initial hydrogen attack is likely to occur, we track mechanistic steps toward the formation of hydrogen-saturated BH4- units and key chemical intermediates, involving H2 dissociation, generation of functionalities and molecular complexes containing BH2 and BH3 motifs, and B-B bond breaking. The genesis of higher-order boron clustering is also observed. Different charge states and chemical environments at the B-rich and Mg-rich edge planes are found to produce different chemical pathways and preferred speciation, with implications for overall hydrogenation kinetics. The reaction processes rely on B-H bond polarization and fluctuations between ionic and covalent character, which are critically enabled by the presence of Mg2+ cations in the nearby interphase region. Our results provide guidance for devising kinetic improvement strategies for MgB2-based hydrogen storage materials, while also providing a template for exploring chemical pathways in other solid-state energy storage reactions.

5.
Nat Commun ; 12(1): 6268, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725350

RESUMO

Layered boron compounds have attracted significant interest in applications from energy storage to electronic materials to device applications, owing in part to a diversity of surface properties tied to specific arrangements of boron atoms. Here we report the energy landscape for surface atomic configurations of MgB2 by combining first-principles calculations, global optimization, material synthesis and characterization. We demonstrate that contrary to previous assumptions, multiple disordered reconstructions are thermodynamically preferred and kinetically accessible within exposed B surfaces in MgB2 and other layered metal diborides at low boron chemical potentials. Such a dynamic environment and intrinsic disordering of the B surface atoms present new opportunities to realize a diverse set of 2D boron structures. We validated the predicted surface disorder by characterizing exfoliated boron-terminated MgB2 nanosheets. We further discuss application-relevant implications, with a particular view towards understanding the impact of boron surface heterogeneity on hydrogen storage performance.

6.
J Phys Chem Lett ; 12(26): 6126-6133, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34181429

RESUMO

Fully synthetic peptoid membranes are known to mimic important features of biological membranes, with several advantages over other biomimetic membranes. A fundamental understanding of how the individual peptoid amphiphiles assemble in solution to form the bilayer membrane is key to unlocking their versatility for application in a broad range of processes. In this study, in situ X-ray scattering and molecular dynamics simulations are used to understand the early stages of assembly of three different peptoids that exhibit distinctly different crystallization kinetics. The in situ measurements reveal that the peptoids aggregate first into a nascent phase that is less crystalline than the assembled peptoid membrane. Anisotropic aromatic interactions are determined to be the dominant driving force in the early stages of membrane formation. These results provide key insights into how the peptoid assembly may be manipulated during the early stages of assembly and nucleation and growth.


Assuntos
Membranas Artificiais , Nanoestruturas/química , Peptoides/química , Conformação Molecular , Simulação de Dinâmica Molecular
7.
J Phys Condens Matter ; 32(49): 495803, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32914765

RESUMO

The role of finite size effects on magnetic order has been investigated in samarium nanoparticles prepared by physical vapor deposition. A dense layer composed of distinct nanoparticles with a mean particle diameter of 26 nm was deposited on a diamagnetic substrate. M(T) measurements identify the expected pair of antiferromagnetic ordering temperatures in the bulk Sm precursor, at 113 K and 14 K, where the magnetic unit cell for the lower ordering temperature is 10.36 nm along the c-axis. The high temperature ordering of the hexagonal sites in the Sm nanocrystals is slightly decreased with respect to that of bulk Sm, while the low temperature transition associated with the cubic sites is significantly suppressed. The observed changes are attributed to finite size effects, with ordering suppressed as the particle radius approaches the length of the magnetic unit cell, and surface moments become more prominent.

8.
Science ; 368(6491): 660-665, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32381724

RESUMO

State-of-the-art metal 3D printers promise to revolutionize manufacturing, yet they have not reached optimal operational reliability. The challenge is to control complex laser-powder-melt pool interdependency (dependent upon each other) dynamics. We used high-fidelity simulations, coupled with synchrotron experiments, to capture fast multitransient dynamics at the meso-nanosecond scale and discovered new spatter-induced defect formation mechanisms that depend on the scan strategy and a competition between laser shadowing and expulsion. We derived criteria to stabilize the melt pool dynamics and minimize defects. This will help improve build reliability.

9.
Nanoscale ; 12(11): 6545-6555, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32159198

RESUMO

Bilayer vesicles that mimic a real biological cell can be tailored to carry out a specific function by manipulating the molecular composition of the amphiphiles. These bio-inspired and bio-mimetic structures are increasingly being employed for a number of applications from drug delivery to water purification and beyond. Complex hybrid bilayers are the key building blocks for fully synthetic vesicles that can mimic biological cell membranes, which often contain a wide variety of molecular species. While the assembly and morpholgy of pure phospholid bilayer vesicles is well understood, the functionality and structure dramaticlly changes when copolymer and/or carbon nanotube porins (CNTP) are added. The aim of this study is to understand how the collective molecular interactions within hybrid vesicles affect their nanoscale structure and properties. In situ small and wide angle X-ray scattering (SAXS/WAXS) and molecular dynamics simulations (MD) are used to investigate the morphological effect of molecular interactions between polybutadiene polyethylene oxide, lipids and carbon nanotubes (CNT) within the hybrid vesicle bilayer. Within the lipid/copolymer system, the hybrid bilayer morphology transitions from phase separated lipid and compressed copolymer at low copolymer loadings to a mixed bilayer where opposing lipids are mostly separated from the inner region. This transition begins between 60 wt% and 70 wt%, with full homogenization observed by 80 wt% copolymer. The incorporation of CNT into the hybrid vesicles increases the bilayer thickness and enhances the bilayer symmetry. Analysis of the WAXS and MD indicate that the CNT-dioleoyl interactions are much stronger than the CNT-polybutadiene.


Assuntos
Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Nanotubos de Carbono/química , Porinas/química , Difração de Raios X
10.
ACS Appl Mater Interfaces ; 11(5): 4930-4941, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30630309

RESUMO

Solid-state metal hydrides are prime candidates to replace compressed hydrogen for fuel cell vehicles due to their high volumetric capacities. Sodium aluminum hydride has long been studied as an archetype for higher-capacity metal hydrides, with improved reversibility demonstrated through the addition of titanium catalysts; however, atomistic mechanisms for surface processes, including hydrogen desorption, are still uncertain. Here, operando and ex situ measurements from a suite of diagnostic tools probing multiple length scales are combined with ab initio simulations to provide a detailed and unbiased view of the evolution of the surface chemistry during hydrogen release. In contrast to some previously proposed mechanisms, the titanium dopant does not directly facilitate desorption at the surface. Instead, oxidized surface species, even on well-protected NaAlH4 samples, evolve during dehydrogenation to form surface hydroxides with differing levels of hydrogen saturation. Additionally, the presence of these oxidized species leads to considerably lower computed barriers for H2 formation compared to pristine hydride surfaces, suggesting that oxygen may actively participate in hydrogen release, rather than merely inhibiting diffusion as is commonly presumed. These results demonstrate how close experiment-theory feedback can elucidate mechanistic understanding of complex metal hydride chemistry and potentially impactful roles of unavoidable surface impurities.

11.
Phys Chem Chem Phys ; 19(34): 22646-22658, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28795705

RESUMO

Mg(BH4)2 is a promising solid-state hydrogen storage material, releasing 14.9 wt% hydrogen upon conversion to MgB2. Although several dehydrogenation pathways have been proposed, the hydrogenation process is less well understood. Here, we present a joint experimental-theoretical study that elucidates the key atomistic mechanisms associated with the initial stages of hydrogen uptake within MgB2. Fourier transform infrared, X-ray absorption, and X-ray emission spectroscopies are integrated with spectroscopic simulations to show that hydrogenation can initially proceed via direct conversion of MgB2 to Mg(BH4)2 complexes. The associated energy landscape is mapped by combining ab initio calculations with barriers extracted from the experimental uptake curves, from which a kinetic model is constructed. The results from the kinetic model suggest that initial hydrogenation takes place via a multi-step process: molecular H2 dissociation, likely at Mg-terminated MgB2 surfaces, is followed by migration of atomic hydrogen to defective boron sites, where the formation of stable B-H bonds ultimately leads to the direct creation of Mg(BH4)2 complexes without persistent BxHy intermediates. Implications for understanding the chemical, structural, and electronic changes upon hydrogenation of MgB2 are discussed.

12.
Opt Express ; 24(16): 17616-34, 2016 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-27505731

RESUMO

Laser damage mechanisms of two conductive wide-bandgap semiconductor films - indium tin oxide (ITO) and silicon doped GaN (Si:GaN) were studied via microscopy, spectroscopy, photoluminescence (PL), and elemental analysis. Nanosecond laser pulse exposures with a laser photon energy (1.03 eV, 1064 nm) smaller than the conductive films bandgaps were applied and radically different film damage morphologies were produced. The laser damaged ITO film exhibited deterministic features of thermal degradation. In contrast, laser damage in the Si:GaN film resulted in highly localized eruptions originating at interfaces. For ITO, thermally driven damage was related to free carrier absorption and, for GaN, carbon complexes were proposed as potential damage precursors or markers.

13.
Nano Lett ; 16(7): 4019-24, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27322135

RESUMO

Carbon nanotube porins (CNTPs), small segments of carbon nanotubes capable of forming defined pores in lipid membranes, are important future components for bionanoelectronic devices as they could provide a robust analog of biological membrane channels. In order to control the incorporation of these CNT channels into lipid bilayers, it is important to understand the structure of the CNTPs before and after insertion into the lipid bilayer as well as the impact of such insertion on the bilayer structure. Here we employed a noninvasive in situ probe, small-angle X-ray scattering, to study the integration of CNT porins into dioleoylphosphatidylcholine bilayers. Our results show that CNTPs in solution are stabilized by a monolayer of lipid molecules wrapped around their outer surface. We also demonstrate that insertion of CNTPs into the lipid bilayer results in decreased bilayer thickness with the magnitude of this effect increasing with the concentration of CNTPs.


Assuntos
Nanoporos , Nanotubos de Carbono , Bicamadas Lipídicas , Espalhamento a Baixo Ângulo , Difração de Raios X
14.
Sci Rep ; 5: 16190, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26536830

RESUMO

Atomic hydrogen exists ubiquitously in graphene materials made by chemical methods. Yet determining the effect of hydrogen on the electrochemical performance of graphene remains a significant challenge. Here we report the experimental observations of high rate capacity in hydrogen-treated 3-dimensional (3D) graphene nanofoam electrodes for lithium ion batteries. Structural and electronic characterization suggests that defect sites and hydrogen play synergistic roles in disrupting sp(2) graphene to facilitate fast lithium transport and reversible surface binding, as evidenced by the fast charge-transfer kinetics and increased capacitive contribution in hydrogen-treated 3D graphene. In concert with experiments, multiscale calculations reveal that defect complexes in graphene are prerequisite for low-temperature hydrogenation, and that the hydrogenation of defective or functionalized sites at strained domain boundaries plays a beneficial role in improving rate capacity by opening gaps to facilitate easier Li penetration. Additional reversible capacity is provided by enhanced lithium binding near hydrogen-terminated edge sites. These findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes.

15.
Nanoscale ; 7(21): 9477-86, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25874680

RESUMO

Phospholipid bilayer coated Si nanowires are one-dimensional (1D) composites that provide versatile bio-nanoelectronic functionality via incorporation of a wide variety of biomolecules into the phospholipid matrix. The physiochemical behaviour of the phospholipid bilayer is strongly dependent on its structure and, as a consequence, substantial modelling and experimental efforts have been directed at the structural characterization of supported bilayers and unsupported phospholipid vesicles; nonetheless, the experimental studies conducted to date have exclusively involved volume-averaged techniques, which do not allow for the assignment of spatially resolved structural variations that could critically impact the performance of the 1D phospholipid-Si NW composites. In this manuscript, we use scanning transmission X-ray microscopy (STXM) to probe bond orientation and bilayer thickness as a function of position with a spatial resolution of ∼30 nm for Δ9-cis 1,2-dioleoyl-sn-glycero-3-phosphocholine layers prepared Si NWs. When coupled with small angle X-ray scattering measurements, the STXM data reveal structural motifs of the Si NWs that give rise to multi-bilayer formation and enable assignment of the orientation of specific bonds known to affect the order and rigidity of phospholipid bilayers.

16.
Adv Mater ; 27(9): 1512-8, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25503328

RESUMO

The dynamic physiochemical response of a functioning graphene-based aerogel supercapacitor is monitored in operando by soft X-ray spectroscopy and interpreted through ab initio atomistic simulations. Unanticipated changes in the electronic structure of the electrode as a function of applied voltage bias indicate structural modifications across multiple length scales via independent pseudocapacitive and electric double layer charge storage channels.

17.
ACS Nano ; 8(10): 11013-22, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25283720

RESUMO

Aerogels are used in a broad range of scientific and industrial applications due to their large surface areas, ultrafine pore sizes, and extremely low densities. Recently, a large number of reports have described graphene aerogels based on the reduction of graphene oxide (GO). Though these GO-based aerogels represent a considerable advance relative to traditional carbon aerogels, they remain significantly inferior to individual graphene sheets due to their poor crystallinity. Here, we report a straightforward method to synthesize highly crystalline GO-based graphene aerogels via high-temperature processing common in commercial graphite production. The crystallization of the graphene aerogels versus annealing temperature is characterized using Raman and X-ray absorption spectroscopy, X-ray diffraction, and electron microscopy. Nitrogen porosimetry shows that the highly crystalline graphene macrostructure maintains a high surface area and ultrafine pore size. Because of their enhanced crystallinity, these graphene aerogels exhibit a ∼ 200 °C improvement in oxidation temperature and an order of magnitude increase in electrical conductivity.

18.
Methods Enzymol ; 532: 165-87, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24188767

RESUMO

Self-assembled monolayers (SAMs) of organothiol molecules prepared on noble metal substrates are known to exert considerable influence over biomineral nucleation and growth and, as such, offer model templates for investigation of the processes of directed biomineralization. Identifying the structural evolution of SAM/crystal systems is essential for a more comprehensive understanding of the mechanisms by which organic monolayers mediate mineral growth. X-ray absorption spectroscopy (XAS) provides the attractive ability to study SAM structure at critical stages throughout the processes of crystallization in SAM/mineral systems. Here, we discuss important theoretical and experimental considerations for designing and implementing XAS studies of SAM/mineral systems.


Assuntos
Espectroscopia por Absorção de Raios X , Algoritmos , Calibragem , Cristalização , Ácidos Decanoicos/química , Ouro/química , Grafite/química , Minerais/química , Modelos Moleculares , Soluções , Compostos de Sulfidrila/química
19.
Methods Enzymol ; 532: 209-24, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24188769

RESUMO

Organothiol self-assembled monolayers (SAMs) have garnered much interest as templates for oriented crystallization of biominerals. While, on the surface, SAM preparation appears to be straightforward, there are many subtleties that may yield films that lack the desired effect on the mineral component in subsequent use for templated mineralization. Herein, we discuss literature that uses organothiol SAMs to understand various principles in biomineralization, to motivate the following discussion of preparation procedures and pitfalls that may arise while working with SAMs. We provide a range of parameters for each element of a SAM-forming process, which have been shown in the literature to produce monolayers suitable for mineralization experiments, and close with a step-by-step procedure, based on findings in the cited literature, that yields functional SAMs with very high fidelity.


Assuntos
Carbonato de Cálcio/química , Compostos de Sulfidrila/química , Dióxido de Carbono/química , Cromo/química , Cristalização/métodos , Dióxido de Silício/química , Propriedades de Superfície , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA