Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2401260, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38953344

RESUMO

Polyetheretherketone (PEEK), a bioinert polymer known for its mechanical properties similar to bone, is capable of averting stress shielding. Due to these attributes, it finds applications in diverse fields like orthopedics, encompassing cervical disc replacement for the neck and spine, along with dentistry and plastic surgery. However, due to insufficient bonding with bone, various methods such as hydroxyapatite (HA) coating on the surface are attempted. Nonetheless, the interface between the polymer and ceramic, two different materials, tended to delaminate after transplantation, posing challenges in preventing implant escape or dislodgement. This research delves into the laser-driven hydroxyapatite penetration-synthesis technique. Differing from conventional coating methods that bond layers of dissimilar materials like HA and PEEK, this technology focuses on synthesizing and infiltrating ionized HA within the PEEK substrate resulting in an interface-free HA-PEEK surface. Conversely, HA-PEEK with this technology applied achieves complete, gap-free direct bone-implant integration.  Our research involved the analysis of various aspects. By means of these, we quantitatively assesed the enhanced bone bonding characteristics of HA-PEEK surfaces treated with this approach and offered and explanation for the mechanism responsible for direct bone integration.

2.
Small ; : e2403537, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004860

RESUMO

Rechargeable batteries have transformed human lives and modern industry, ushering in new technological advancements such as mobile consumer electronics and electric vehicles. However, to fulfill escalating demands, it is crucial to address several critical issues including energy density, production cost, cycle life and durability, temperature sensitivity, and safety concerns is imperative. Recent research has shed light on the intricate relationship between these challenges and the chemical processes occurring at the electrode-electrolyte interface. Consequently, a novel approach has emerged, utilizing self-assembled molecular layers (SAMLs) of meticulously designed molecules as nanomaterials for interface engineering. This research provides a comprehensive overview of recent studies underscoring the significant roles played by SAML in rechargeable battery applications. It discusses the mechanisms and advantageous features arising from the incorporation of SAML. Moreover, it delineates the remaining challenges in SAML-based rechargeable battery research and technology, while also outlining future perspectives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...