Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
2.
J Virol ; 94(4)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31748391

RESUMO

Little is known about how genetic variations in viruses affect their success as therapeutic agents. The type 3 Dearing strain of Mammalian orthoreovirus (T3D) is undergoing clinical trials as an oncolytic virotherapy. Worldwide, studies on reovirus oncolysis use T3D stocks propagated in different laboratories. Here, we report that genetic diversification among T3D stocks from various sources extensively impacts oncolytic activity. The T3D strain from the Patrick Lee laboratory strain (TD3PL) showed significantly stronger oncolytic activities in a murine model of melanoma than the strain from the Terence Dermody laboratory (T3DTD). Overall in vitro replication and cytolytic properties of T3D laboratory strains were assessed by measuring virus plaque size on a panel of human and mouse tumor cells, and results were found to correlate with in vivo oncolytic potency in a melanoma model. T3DPL produced larger plaques than T3DTD and than the T3D strain from the ATCC (T3DATCC) and from the Kevin Coombs laboratory (T3DKC). Reassortant and reverse genetics analyses were used to decipher key genes and polymorphisms that govern enhanced plaque size of T3DPL Five single amino acid changes in the S4, M1, and L3 genome segments of reovirus were each partially correlated with plaque size and when combined were able to fully account for differences between T3DPL and T3DTD Moreover, polymorphisms were discovered in T3DTD that promoted virus replication and spread in tumors, and a new T3DPL/T3DTD hybrid was generated with enhanced plaque size compared to that of T3DPL Altogether, single amino acid changes acquired during laboratory virus propagation can have a large impact on reovirus therapeutic potency and warrant consideration as possible confounding variables between studies.IMPORTANCE The reovirus serotype 3 Dearing (T3D) strain is in clinical trials for cancer therapy. We find that closely related laboratory strains of T3D exhibit large differences in their abilities to replicate in cancer cells in vitro, which correlates with oncolytic activity in a in a murine model of melanoma. The study reveals that five single amino acid changes among three reovirus genes strongly impact reovirus therapeutic potency. In general, the findings suggest that attention should be given to genomic divergence of virus strains during research and optimization for cancer therapy.


Assuntos
Orthoreovirus Mamífero 3/genética , Terapia Viral Oncolítica/métodos , Replicação Viral/genética , Aminoácidos/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Variação Genética/genética , Humanos , Orthoreovirus Mamífero 3/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Orthoreovirus de Mamíferos/genética , Orthoreovirus de Mamíferos/metabolismo , Filogenia , Reoviridae/genética , Proteínas Virais/metabolismo
3.
Oncotarget ; 10(53): 5572, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31565192

RESUMO

[This retracts the article DOI: 10.18632/oncotarget.378.].

4.
Antioxid Redox Signal ; 30(6): 906-923, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29334761

RESUMO

SIGNIFICANCE: NAD+ is an essential redox cofactor in cellular metabolism and has emerged as an important regulator of a wide spectrum of disease conditions, most notably, cancers. As such, various strategies targeting NAD+ synthesis in cancers are in clinical trials. Recent Advances: Being a substrate required for the activity of various enzyme families, especially sirtuins and poly(adenosine diphosphate [ADP]-ribose) polymerases, NAD+-mediated signaling plays an important role in gene expression, calcium release, cell cycle progression, DNA repair, and cell proliferation. Many strategies exploring the potential of interfering with NAD+ metabolism to sensitize cancer cells to achieve anticancer benefits are highly promising, and are being pursued. CRITICAL ISSUES: With the multifaceted roles of NAD+ in cancer, it is important to understand how cellular processes are reliant on NAD+. This review summarizes how NAD+ metabolism regulates various pathophysiological processes in cancer, and how this knowledge can be exploited to devise effective anticancer therapies in clinical settings. FUTURE DIRECTIONS: In line with the redundant pathways that facilitate NAD+ metabolism, further studies should comprehensively understand the roles of the various NAD+-synthesizing as well as NAD+-utilizing biomolecules to understand its true potential in cancer treatment.


Assuntos
Regulação Neoplásica da Expressão Gênica , NAD/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Oncogenes/genética , Animais , Humanos , Poli(ADP-Ribose) Polimerases/metabolismo , Transdução de Sinais/genética , Sirtuínas/metabolismo
5.
Autophagy ; 15(4): 686-706, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30444165

RESUMO

Cancer stem-like cells (CSCs), a small population of pluripotent cells residing within heterogeneous tumor mass, remain highly resistant to various chemotherapies as compared to the differentiated cancer cells. It is being postulated that CSCs possess unique molecular mechanisms, such as autophagic homeostasis, that allow CSCs to withstand the therapeutic assaults. Here we demonstrate that HDAC6 inhibition differentially modulates macroautophagy/autophagy in CSCs as compared to that of differentiated cancer cells. Using human and murine CSC models and differentiated cells, we show that the inhibition or knockdown (KD) of HDAC6 decreases CSC pluripotency by downregulating major pluripotency factors POU5F1, NANOG and SOX2. This decreased HDAC6 expression increases ACTB, TUBB3 and CSN2 expression and promotes differentiation in CSCs in an apoptosis-independent manner. Mechanistically, HDAC6 KD in CSCs decreases pluripotency by promoting autophagy, whereas the inhibition of pluripotency via retinoic acid treatment, POU5F1 or autophagy-related gene (ATG7 and ATG12) KD in CSCs decreases HDAC6 expression and promotes differentiation. Interestingly, HDAC6 KD-mediated CSC growth inhibition is further enhanced in the presence of autophagy inducers Tat-Beclin 1 peptide and rapamycin. In contrast to the results observed in CSCs, HDAC6 KD in differentiated breast cancer cells downregulates autophagy and increases apoptosis. Furthermore, the autophagy regulator p-MTOR, upstream negative regulators of p-MTOR (TSC1 and TSC2) and downstream effectors of p-MTOR (p-RPS6KB and p-EIF4EBP1) are differentially regulated in CSCs versus differentiated cancer cells following HDAC6 KD. Overall these data identify the differential regulation of autophagy as a molecular link behind the differing chemo-susceptibility of CSCs and differentiated cancer cells.


Assuntos
Autofagia/genética , Neoplasias da Mama/metabolismo , Diferenciação Celular/genética , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/metabolismo , Células-Tronco Neoplásicas/metabolismo , Actinas/metabolismo , Animais , Apoptose/genética , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Neoplasias da Mama/genética , Sobrevivência Celular/genética , Feminino , Células HEK293 , Desacetilase 6 de Histona/genética , Humanos , Camundongos , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteoma/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/antagonistas & inibidores , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/antagonistas & inibidores , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
6.
Trends Immunol ; 39(3): 209-221, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29275092

RESUMO

Oncolytic viruses (OVs) represent a new class of cancer immunotherapeutics. Administration of OVs to cancer-bearing hosts induces two distinct immunities: antiviral and antitumor. While antitumor immunity is beneficial, antiviral immune responses are often considered detrimental for the efficacy of OV-based therapy. The existing dogma postulates that anti-OV immune responses restrict viral replication and spread, and thus reduce direct OV-mediated killing of cancer cells. Accordingly, a myriad of therapeutic strategies aimed at mitigating anti-OV immune responses is presently being tested. Here, we advocate that OV-induced antiviral immune responses hold intrinsic anticancer benefits and are essential for establishing clinically desired antitumor immunity. Thus, to achieve the optimal efficacy of OV-based cancer immunotherapies, strategic management of anti-OV immune responses is of critical importance.


Assuntos
Antígenos de Neoplasias/imunologia , Imunoterapia/métodos , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Animais , Humanos , Imunidade , Imunização , Neoplasias/imunologia , Neoplasias/virologia , Replicação Viral
7.
J Proteome Res ; 16(9): 3391-3406, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28768414

RESUMO

Myeloid cells play a central role in the context of viral eradication, yet precisely how these cells differentiate throughout the course of acute infections is poorly understood. In this study, we have developed a novel quantitative temporal in vivo proteomics (QTiPs) platform to capture proteomic signatures of temporally transitioning virus-driven myeloid cells directly in situ, thus taking into consideration host-virus interactions throughout the course of an infection. QTiPs, in combination with phenotypic, functional, and metabolic analyses, elucidated a pivotal role for inflammatory CD11b+, Ly6G-, Ly6Chigh-low cells in antiviral immune response and viral clearance. Most importantly, the time-resolved QTiPs data set showed the transition of CD11b+, Ly6G-, Ly6Chigh-low cells into M2-like macrophages, which displayed increased antigen-presentation capacities and bioenergetic demands late in infection. We elucidated the pivotal role of myeloid cells in virus clearance and show how these cells phenotypically, functionally, and metabolically undergo a timely transition from inflammatory to M2-like macrophages in vivo. With respect to the growing appreciation for in vivo examination of viral-host interactions and for the role of myeloid cells, this study elucidates the use of quantitative proteomics to reveal the role and response of distinct immune cell populations throughout the course of virus infection.


Assuntos
Interações Hospedeiro-Patógeno , Macrófagos/metabolismo , Células Mieloides/metabolismo , Proteômica/métodos , Infecções por Reoviridae/genética , Animais , Antígenos Ly/genética , Antígenos Ly/imunologia , Biomarcadores/metabolismo , Antígeno CD11b/genética , Antígeno CD11b/imunologia , Diferenciação Celular , Proliferação de Células , Deleção de Genes , Regulação da Expressão Gênica , Ontologia Genética , Macrófagos/imunologia , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Anotação de Sequência Molecular , Células Mieloides/imunologia , Células Mieloides/virologia , Orthoreovirus de Mamíferos/crescimento & desenvolvimento , Orthoreovirus de Mamíferos/patogenicidade , Receptores CCR2/genética , Receptores CCR2/imunologia , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/metabolismo , Infecções por Reoviridae/virologia , Transdução de Sinais , Fatores de Tempo
8.
J Proteome Res ; 16(4): 1806-1816, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28244318

RESUMO

Class I major histocompatibility complex (MHC-I)-bound peptide ligands dictate the activation and specificity of CD8+ T cells and thus are important for devising T-cell immunotherapies. In recent times, advances in mass spectrometry (MS) have enabled the precise identification of these MHC-I peptides, wherein MS spectra are compared against a reference proteome. Unfortunately, matching these spectra to reference proteome databases is hindered by inflated search spaces attributed to a lack of enzyme restriction in the searches, limiting the efficiency with which MHC ligands are discovered. Here we offer a solution to this problem whereby we developed a targeted database search approach and accompanying tool SpectMHC, that is based on a priori-predicted MHC-I peptides. We first validated the approach using MS data from two different allotype-specific immunoprecipitates for the C57BL/6 mouse background. We then developed allotype-specific HLA databases to search previously published MS data sets of human peripheral blood mononuclear cells (PBMCs). This targeted search strategy improved peptide identifications for both mouse and human ligandomes by greater than 2-fold and is superior to traditional "no enzyme" searches of reference proteomes. Our targeted database search promises to uncover otherwise missed novel T-cell epitopes of therapeutic potential.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Espectrometria de Massas/métodos , Peptídeos/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Epitopos de Linfócito T/genética , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunoterapia , Ligantes , Camundongos , Peptídeos/genética
9.
Autophagy ; 13(2): 264-284, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27929731

RESUMO

Pluripotency is an important feature of cancer stem cells (CSCs) that contributes to self-renewal and chemoresistance. The maintenance of pluripotency of CSCs under various pathophysiological conditions requires a complex interaction between various cellular pathways including those involved in homeostasis and energy metabolism. However, the exact mechanisms that maintain the CSC pluripotency remain poorly understood. In this report, using both human and murine models of CSCs, we demonstrate that basal levels of autophagy are required to maintain the pluripotency of CSCs, and that this process is differentially regulated by the rate-limiting enzyme in the NAD+ synthesis pathway NAMPT (nicotinamide phosphoribosyltransferase) and the transcription factor POU5F1/OCT4 (POU class 5 homeobox 1). First, our data show that the pharmacological inhibition and knockdown (KD) of NAMPT or the KD of POU5F1 in human CSCs significantly decreased the expression of pluripotency markers POU5F1, NANOG (Nanog homeobox) and SOX2 (SRY-box 2), and upregulated the differentiation markers TUBB3 (tubulin ß 3 class III), CSN2 (casein ß), SPP1 (secreted phosphoprotein 1), GATA6 (GATA binding protein 6), T (T brachyury transcription factor) and CDX2 (caudal type homeobox 2). Interestingly, these pluripotency-regulating effects of NAMPT and POU5F1 were accompanied by contrasting levels of autophagy, wherein NAMPT KD promoted while POU5F1 KD inhibited the autophagy machinery. Most importantly, any deviation from the basal level of autophagy, either increase (via rapamycin, serum starvation or Tat-beclin 1 [Tat-BECN1] peptide) or decrease (via ATG7 or ATG12 KD), strongly decreased the pluripotency and promoted the differentiation and/or senescence of CSCs. Collectively, these results uncover the link between the NAD+ biosynthesis pathway, CSC transcription factor POU5F1 and pluripotency, and further identify autophagy as a novel regulator of pluripotency of CSCs.


Assuntos
Autofagia , Homeostase , Células-Tronco Neoplásicas/patologia , Células-Tronco Pluripotentes/patologia , Animais , Autofagia/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Citocinas/antagonistas & inibidores , Citocinas/metabolismo , Doxorrubicina/farmacologia , Homeostase/efeitos dos fármacos , Camundongos , Modelos Biológicos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/enzimologia , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
10.
J Innate Immun ; 9(1): 94-108, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27806369

RESUMO

Mucosal surfaces are protected from infection by both structural and sentinel cells, such as mast cells. The mast cell's role in antiviral responses is poorly understood; however, they selectively recruit natural killer (NK) cells following infection. Here, the ability of virus-infected mast cells to enhance NK cell functions was examined. Cord blood-derived human mast cells infected with reovirus (Reo-CBMC) and subsequent mast cell products were used for the stimulation of human NK cells. NK cells upregulated the CD69 molecule and cytotoxicity-related genes, and demonstrated increased cytotoxic activity in response to Reo-CBMC soluble products. NK cell interferon (IFN)-γ production was also promoted in the presence of interleukin (IL)-18. In vivo, SCID mice injected with Reo-CBMC in a subcutaneous Matrigel model, could recruit and activate murine NK cells, a property not shared by normal human fibroblasts. Soluble products of Reo-CBMC included IL-10, TNF, type I and type III IFNs. Blockade of the type I IFN receptor abrogated NK cell activation. Furthermore, reovirus-infected mast cells expressed multiple IFN-α subtypes not observed in reovirus-infected fibroblasts or epithelial cells. Our data define an important mast cell IFN response, not shared by structural cells, and a subsequent novel mast cell-NK cell immune axis in human antiviral host defense.


Assuntos
Imunidade nas Mucosas , Células Matadoras Naturais/imunologia , Mastócitos/imunologia , Orthoreovirus de Mamíferos/imunologia , Infecções por Reoviridae/imunologia , Animais , Células Cultivadas , Citotoxicidade Imunológica , Sangue Fetal/citologia , Humanos , Interferons/metabolismo , Interleucina-18/metabolismo , Mastócitos/transplante , Mastócitos/virologia , Camundongos , Camundongos SCID , Especificidade de Órgãos , Comunicação Parácrina , Receptor de Interferon alfa e beta/antagonistas & inibidores
11.
Pharmacol Res ; 114: 274-283, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27816507

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is an essential coenzyme for various physiological processes including energy metabolism, DNA repair, cell growth, and cell death. Many of these pathways are typically dysregulated in cancer cells, making NAD+ an intriguing target for cancer therapeutics. NAD+ is mainly synthesized by the NAD+ salvage pathway in cancer cells, and not surprisingly, the pharmacological targeting of the NAD+ salvage pathway causes cancer cell cytotoxicity in vitro and in vivo. Several studies have described the precise consequences of NAD+ depletion on cancer biology, and have demonstrated that NAD+ depletion results in depletion of energy levels through lowered rates of glycolysis, reduced citric acid cycle activity, and decreased oxidative phosphorylation. Additionally, depletion of NAD+ causes sensitization of cancer cells to oxidative damage by disruption of the anti-oxidant defense system, decreased cell proliferation, and initiation of cell death through manipulation of cell signaling pathways (e.g., SIRT1 and p53). Recently, studies have explored the effect of well-known cancer therapeutics in combination with pharmacological depletion of NAD+ levels, and found in many cases a synergistic effect on cancer cell cytotoxicity. In this context, we will discuss the effects of NAD+ salvage pathway inhibition on cancer cell biology and provide insight on this pathway as a novel anti-cancer therapeutic target.


Assuntos
Antineoplásicos/farmacologia , Terapia de Alvo Molecular/métodos , NAD/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Humanos , Inflamação/complicações , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Neoplasias/complicações , Nicotinamida Fosforribosiltransferase/metabolismo
12.
Oncotarget ; 7(28): 44096-44112, 2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27286452

RESUMO

Breast cancer subtyping, based on the expression of hormone receptors and other genes, can determine patient prognosis and potential options for targeted therapy. Among breast cancer subtypes, tumors of basal-like and claudin-low subtypes are typically associated with worse patient outcomes, are primarily classified as triple-negative breast cancers (TNBC), and cannot be treated with existing hormone-receptor-targeted therapies. Understanding the molecular basis of these subtypes will lead to the development of more effective treatment options for TNBC. In this study, we focus on retinoic acid receptor responder 1 (RARRES1) as a paradigm to determine if breast cancer subtype dictates protein function and gene expression regulation. Patient tumor dataset analysis and gene expression studies of a 26 cell-line panel, representing the five breast cancer subtypes, demonstrate that RARRES1 expression is greatest in basal-like TNBCs. Cell proliferation and tumor growth assays reveal that RARRES1 is a tumor suppressor in TNBC. Furthermore, gene expression studies, Illumina HumanMethylation450 arrays, and chromatin immunoprecipitation demonstrate that expression of RARRES1 is retained in basal-like breast cancers due to hypomethylation of the promoter. Additionally, expression of the cancer stem cell marker, aldehyde dehydrogenase 1A3, which provides the required ligand (retinoic acid) for RARRES1 transcription, is also specific to the basal-like subtype. We functionally demonstrate that the combination of promoter methylation and retinoic acid signaling dictates expression of tumor suppressor RARRES1 in a subtype-specific manner. These findings provide a precedent for a therapeutically-inducible tumor suppressor and suggest novel avenues of therapeutic intervention for patients with basal-like breast cancer.


Assuntos
Aldeído Oxirredutases/genética , Neoplasias da Mama/genética , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/genética , Aldeído Oxirredutases/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Prognóstico , Mapas de Interação de Proteínas/genética , Interferência de RNA , Transplante Heterólogo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Carga Tumoral/genética
14.
Viruses ; 7(12): 6506-25, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26690204

RESUMO

Dendritic cells (DCs) are specialized antigen-presenting cells that have a notable role in the initiation and regulation of innate and adaptive immune responses. In the context of cancer, appropriately activated DCs can induce anti-tumor immunity by activating innate immune cells and tumor-specific lymphocytes that target cancer cells. However, the tumor microenvironment (TME) imposes different mechanisms that facilitate the impairment of DC functions, such as inefficient antigen presentation or polarization into immunosuppressive DCs. These tumor-associated DCs thus fail to initiate tumor-specific immunity, and indirectly support tumor progression. Hence, there is increasing interest in identifying interventions that can overturn DC impairment within the TME. Many reports thus far have studied oncolytic viruses (OVs), viruses that preferentially target and kill cancer cells, for their capacity to enhance DC-mediated anti-tumor effects. Herein, we describe the general characteristics of DCs, focusing on their role in innate and adaptive immunity in the context of the TME. We also examine how DC-OV interaction affects DC recruitment, OV delivery, and anti-tumor immunity activation. Understanding these roles of DCs in the TME and OV infection is critical in devising strategies to further harness the anti-tumor effects of both DCs and OVs, ultimately enhancing the efficacy of OV-based oncotherapy.


Assuntos
Células Dendríticas/imunologia , Neoplasias/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/imunologia , Imunidade Celular
15.
Cell Cycle ; 14(14): 2301-10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25946643

RESUMO

Dysregulation of Ras signaling is the major cause of various cancers. Aberrant Ras signaling, however, provides a favorable environment for many viruses, making them suitable candidates as cancer-killing therapeutic agents. Susceptibility of cancer cells to such viruses is mainly due to impaired type I interferon (IFN) response, often as a result of activated Ras/ERK signaling in these cells. In this study, we searched for cellular factors modulated by Ras signaling and their potential involvement in promoting viral oncolysis. We found that upon Ras transformation of NIH-3T3 cells, the N-terminus of Nogo-B (reticulon 4) was proteolytically cleaved. Interestingly, Nogo knockdown (KD) in non-transformed and Ras-transformed cells both enhanced virus-induced IFN response, suggesting that both cleaved and uncleaved Nogo can suppress IFN response. However, pharmacological blockade of Nogo cleavage in Ras-transformed cells significantly enhanced virus-induced IFN response, suggesting that cleaved Nogo contributes to enhanced IFN suppression in these cells. We further showed that IFN suppression associated with Ras-induced Nogo-B cleavage was distinct from but synergistic with that associated with an activated Ras/ERK pathway. Our study therefore reveals an important and novel role of Nogo-B and its cleavage in the suppression of anti-viral immune responses by oncogenic Ras transformation.


Assuntos
Interferons/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas ras/metabolismo , Sequência de Aminoácidos , Animais , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Células NIH 3T3 , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/genética , Proteínas ras/genética
16.
J Immunol ; 194(9): 4397-412, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25825443

RESUMO

Tumor-associated immunosuppression aids cancer cells to escape immune-mediated attack and subsequent elimination. Recently, however, many oncolytic viruses, including reovirus, have been reported to overturn such immunosuppression and promote the development of a clinically desired antitumor immunity, which is known to promote favorable patient outcomes. Contrary to this existing paradigm, in this article we demonstrate that reovirus augments tumor-associated immunosuppression immediately following its therapeutic administration. Our data show that reovirus induces preferential differentiation of highly suppressive CD11b(+), Gr-1(+), Ly6C(high) myeloid cells from bone marrow hematopoietic progenitor cells. Furthermore, reovirus administration in tumor-bearing hosts drives time-dependent recruitment of CD11b(+), Gr-1(+), Ly6C(high) myeloid cells in the tumor milieu, which is further supported by virus-induced increased expression of numerous immune factors involved in myeloid-derived suppressor cell survival and trafficking. Most importantly, CD11b(+), Gr-1(+), Ly6C(high) myeloid cells specifically potentiate the suppression of T cell proliferation and are associated with the absence of IFN-γ response in the tumor microenvironment early during oncotherapy. Considering that the qualitative traits of a specific antitumor immunity are largely dictated by the immunological events that precede its development, our findings are of critical importance and must be considered while devising complementary interventions aimed at promoting the optimum efficacy of oncolytic virus-based anticancer immunotherapies.


Assuntos
Vetores Genéticos , Imunomodulação , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neoplasias/imunologia , Vírus Oncolíticos , Fenótipo , Animais , Antígenos Ly/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Antígeno CD11b/metabolismo , Diferenciação Celular , Quimiotaxia/imunologia , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/imunologia , Humanos , Orthoreovirus Mamífero 3/genética , Orthoreovirus Mamífero 3/imunologia , Camundongos , Células Mieloides/citologia , Neoplasias/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/imunologia , Receptores de Quimiocinas/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Microambiente Tumoral/imunologia
17.
Mol Oncol ; 9(1): 17-31, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25106087

RESUMO

Aldehyde dehydrogenase (ALDH) 1A enzymes produce retinoic acid (RA), a transcription induction molecule. To investigate if ALDH1A1 or ALDH1A3-mediated RA signaling has an active role in breast cancer tumorigenesis, we performed gene expression and tumor xenograft studies. Analysis of breast patient tumors revealed that high levels of ALDH1A3 correlated with expression of RA-inducible genes with retinoic acid response elements (RAREs), poorer patient survival and triple-negative breast cancers. This suggests a potential link between ALDH1A3 expression and RA signaling especially in aggressive and/or triple-negative breast cancers. In MDA-MB-231, MDA-MB-468 and MDA-MB-435 cells, ALDH1A3 and RA increased expression of RA-inducible genes. Interestingly, ALDH1A3 had opposing effects in tumor xenografts, increasing tumor growth and metastasis of MDA-MB-231 and MDA-MB-435 cells, but decreasing tumor growth of MDA-MB-468 cells. Exogenous RA replaced ALDH1A3 in inducing the same opposing tumor growth and metastasis effects, suggesting that ALDH1A3 mediates these effects by promoting RA signaling. Genome expression analysis revealed that ALDH1A3 induced largely divergent gene expression in MDA-MB-231 and MDA-MB-468 cells which likely resulted in the opposing tumor growth effects. Treatment with DNA methylation inhibitor 5-aza-2'deoxycytidine restored uniform RA-inducibility of RARE-containing HOXA1 and MUC4 in MDA-MB-231 and MDA-MB-468 cells, suggesting that differences in epigenetic modifications contribute to differential ALDH1A3/RA-induced gene expression in breast cancer. In summary, ALDH1A3 induces differential RA signaling in breast cancer cells which affects the rate of breast cancer progression.


Assuntos
Aldeído Oxirredutases/metabolismo , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Tretinoína/metabolismo , Aldeído Oxirredutases/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Camundongos , Metástase Neoplásica , Proteínas de Neoplasias/genética , Transplante de Neoplasias
18.
Neoplasia ; 16(11): 950-60, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25425969

RESUMO

INTRODUCTION: Incisional biopsies, including the diagnostic core needle biopsy (CNB), routinely performed before surgical excision of breast cancer tumors are hypothesized to increase the risk of metastatic disease. In this study, we experimentally determined whether CNB of breast cancer tumors results in increased distant metastases and examine important resultant changes in the primary tumor and tumor microenvironment associated with this outcome. METHOD: To evaluate the effect of CNB on metastasis development, we implanted murine mammary 4T1 tumor cells in BALB/c mice and performed CNB on palpable tumors in half the mice. Subsequently, emulating the human scenario, all mice underwent complete tumor excision and were allowed to recover, with attendant metastasis development. Tumor growth, lung metastasis, circulating tumor cell (CTC) levels, variation in gene expression, composition of the tumor microenvironment, and changes in immunologic markers were compared in biopsied and non-biopsied mice. RESULTS: Mice with biopsied tumors developed significantly more lung metastases compared to non-biopsied mice. Tumors from biopsied mice contained a higher frequency of myeloid-derived suppressor cells (MDSCs) accompanied by reduced CD4 + T cells, CD8 + T cells, and macrophages, suggesting biopsy-mediated development of an increasingly immunosuppressive tumor microenvironment. We also observed a CNB-dependent up-regulation in the expression of SOX4, Ezh2, and other key epithelial-mesenchymal transition (EMT) genes, as well as increased CTC levels among the biopsy group. CONCLUSION: CNB creates an immunosuppressive tumor microenvironment, increases EMT, and facilitates release of CTCs, all of which likely contribute to the observed increase in development of distant metastases.


Assuntos
Modelos Animais de Doenças , Neoplasias Pulmonares/secundário , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/patologia , Animais , Biópsia com Agulha de Grande Calibre , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Citocinas/genética , Proteína Potenciadora do Homólogo 2 de Zeste , Transição Epitelial-Mesenquimal/genética , Feminino , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Linfócitos/metabolismo , Macrófagos/metabolismo , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Camundongos Endogâmicos BALB C , Células Neoplásicas Circulantes/metabolismo , Complexo Repressor Polycomb 2/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOXC/genética , Microambiente Tumoral/genética
19.
Front Oncol ; 4: 77, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24782988

RESUMO

Anti-tumor immunity can eliminate existing cancer cells and also maintain a constant surveillance against possible relapse. Such an antigen-specific adaptive response begins when tumor-specific T cells become activated. T-cell activation requires two signals on antigen presenting cells (APCs): antigen presentation through major histocombatibility complex (MHC) molecules and co-stimulation. In the absence of one or both these signals, T cells remain inactivated or can even become tolerized. Cancer cells and their associated microenvironment strategically hinder the processing and presentation of tumor antigens and consequently prevent the development of anti-tumor immunity. Many studies, however, demonstrate that interventions that over-turn tumor-associated immune evasion mechanisms can establish anti-tumor immune responses of therapeutic potential. One such intervention is oncolytic virus (OV)-based anti-cancer therapy. Here, we discuss how OV-induced immunological events override tumor-associated antigen presentation impairment and promote appropriate T cell-APC interaction. Detailed understanding of this phenomenon is pivotal for devising the strategies that will enhance the efficacy of OV-based anti-cancer therapy by complementing its inherent oncolytic activities with desired anti-tumor immune responses.

20.
Cell Cycle ; 13(6): 1041-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24552824

RESUMO

NAD(+) metabolism plays key roles not only in energy production but also in diverse cellular physiology. Aberrant NAD(+) metabolism is considered a hallmark of cancer. Recently, the tumor suppressor p53, a major player in cancer signaling pathways, has been implicated as an important regulator of cellular metabolism. This notion led us to examine whether p53 can regulate NAD(+) biosynthesis in the cell. Our search resulted in the identification of nicotinamide mononucleotide adenylyltransferase 2 (NMNAT-2), a NAD(+) synthetase, as a novel downstream target gene of p53. We show that NMNAT-2 expression is induced upon DNA damage in a p53-dependent manner. Two putative p53 binding sites were identified within the human NMNAT-2 gene, and both were found to be functional in a p53-dependent manner. Furthermore, knockdown of NMNAT-2 significantly reduces cellular NAD(+) levels and protects cells from p53-dependent cell death upon DNA damage, suggesting an important functional role of NMNAT-2 in p53-mediated signaling. Our demonstration that p53 modulates cellular NAD(+) synthesis is congruent with p53's emerging role as a key regulator of metabolism and related cell fate.


Assuntos
NAD/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Sítios de Ligação , Morte Celular , Linhagem Celular Tumoral , Dano ao DNA , Humanos , Nicotinamida-Nucleotídeo Adenililtransferase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...