Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(3): 3778-3785, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38268146

RESUMO

Although recent dramatic advances in power conversion efficiencies (PCEs) have resulted in values over 19%, the poor photostability of organic photovoltaics (OPVs) has been a serious bottleneck to their commercialization. The photocatalytic effect, which is caused by incident ultraviolet-A (UV-A, 320-400 nm) light in the most commonly used zinc oxide (ZnOX) electron transport layer (ETL), significantly deteriorates the photostability of OPVs. In this work, we develop a new and facile method to enhance the photostability of nonfullerene acceptor-based OPVs by introducing UV-A-insensitive titanium suboxide (TiOX) ETL. Through an in-depth analysis of mass information at the interface between the ETL and photoactive layer, we confirm that the UV-A-insensitive TiOX suppresses the photocatalytic effect. The resulting device employing the TiOX ETL shows excellent photostability, obtaining 80% of the initial PCE for up to 200 h under 1 sun illumination, which is 10 times longer than that of the conventional ZnOX system (19 h).

2.
ACS Appl Mater Interfaces ; 15(36): 42802-42810, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37652403

RESUMO

The tailoring of the average photopic transmittance (APT) of transparent organic solar cells (T-OSCs) has been the greatest challenge in building-integrated photovoltaic applications for future smart solar windows to regulate indoor brightness, maintain a human circadian rhythm, and positively impact human emotions by allowing the observation of the external environment. However, a notorious trade-off exists between the APT and power conversion efficiency (PCE) of T-OSCs, mainly due to the absence of highly conductive and transparent top electrodes, which are a key building block determining the PCE and APT. Herein, we demonstrate a new tungsten oxide (WO3)-based multilayer as a highly conductive and transparent top electrode that provides an excellent APT while maintaining a high PCE in T-OSCs. With the assistance of optical simulation based on a transfer matrix method to calculate the optimum thicknesses of the multilayer electrodes, we achieve the best-performing T-OSC with a PCE of 7.0% and a full device APT of 46.7%, resulting in a high light utilization efficiency of 3.27%, which is superior to that of T-OSCs based on the same photoactive system. Furthermore, superior thermal stability at 85 °C in an N2 atmosphere is observed in WO3-based T-OSCs, maintaining 98% of the initial PCE after about 231 h. Our findings provide new insights into the development of T-OSCs with high efficiency and transparency.

3.
Adv Mater ; 35(31): e2302143, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37099626

RESUMO

Solar cells (PSCs) with quasi-2D Ruddlesden-Popper perovskites (RPP) exhibit greater environmental stability than 3D perovskites; however, the low power conversion efficiency (PCE) caused by anisotropic crystal orientations and defect sites in the bulk RPP materials limit future commercialization. Herein, a simple post-treatment is reported for the top surfaces of RPP thin films (RPP composition of PEA2 MA4 Pb5 I16 = 5) in which zwitterionic n-tert-butyl-α-phenylnitrone (PBN) is used as the passivation material. The PBN molecules passivate the surface and grain boundary defects in the RPP and simultaneously induce vertical direction crystal orientations of the RPPs, which lead to efficient charge transport in the RPP photoactive materials. With this surface engineering methodology, the optimized devices exhibit a remarkably enhanced PCE of 20.05% as compared with the devices without PBN (≈17.53%) and excellent long-term operational stability with 88% retention of the initial PCE under continuous 1-sun irradiation for over 1000 h. The proposed passivation strategy provides new insights into the development of efficient and stable RPP-based PSCs.

4.
Molecules ; 27(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36364440

RESUMO

Herein, we design and characterize 9-heterocyclic ring non-fullerene acceptors (NFAs) with the extended backbone of indacenodithiophene by cyclopenta [2,1-b:3,4-b'] dithiophene (CPDT). The planar conjugated CPDT donor enhances absorption by reducing vibronic transition and charge transport. Developed NFAs with different end groups shows maximum absorption at approximately 790-850 nm in film. Because of the electronegative nature of the end-group, the corresponding acceptors showed deeper LUMO energy levels and red-shifted ultraviolet absorption. We investigate the crystallinity, film morphology, surface energy, and electronic as well as photovoltaic performance. The organic photovoltaic cells using novel NFAs with the halogen end groups fluorine or chlorine demonstrate better charge collection and faster exciton dissociation than photovoltaic cells using NFAs with methyl or lacking a substituent. Photovoltaic devices constructed from m-Me-ITIC with various end groups deliver power conversion efficiencies of 3.6-11.8%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA