Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ISME J ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952008

RESUMO

Microbial interactions impact the functioning of microbial communities. However, microbial interactions within host-associated communities remains poorly understood. Here, we report that the beneficiary rhizobacterium Niallia sp. RD1 requires the helper Pseudomonas putida H3 for bacterial growth and beneficial interactions with the plant host. In the absence of the helper H3 strain, the Niallia sp. RD1 strain exhibited weak respiration and elongated cell morphology without forming bacterial colonies. A transposon mutant of H3 in a gene encoding succinate-semialdehyde dehydrogenase displayed much attenuated support of RD1 colony formation. Through subsequent addition of succinate to the media, we found that succinate serves as a public good that supports RD1 growth. Comparative genome analysis highlighted that RD1 lacked the gene for sufficient succinate, suggesting its evolution as a beneficiary of succinate biosynthesis. The syntrophic interaction between RD1 and H3 efficiently protected tomato plants from bacterial wilt and promoted the tomato growth. The addition of succinate to the medium restored complex II-dependent respiration in RD1 and facilitated the cultivation of various bacterial isolates from the rhizosphere. Taken together, we delineate energy auxotrophic beneficiaries ubiquitous in the microbial community, and these beneficiaries could benefit host plants with the aid of helpers in the rhizosphere.

2.
Plant Pathol J ; 40(3): 251-260, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38835296

RESUMO

Flavobacterium is a genus within the phylum Bacteroidota that remains relatively unexplored. Recent analyses of plant microbiota have identified the phylum Bacteroidota as a major bacterial group in the plant rhizosphere. While Flavobacterium species within the phylum Bacteroidota have been recognized as pathogens in the aquatic habitats, microbiome analysis and the characterization of novel Flavobacterium species have indicated the great diversity and potential of their presence in various environments. Many Flavobacterium species have positively contribute to plant health and development, including growth promotion, disease control, and tolerance to abiotic stress. Despite the well-described beneficial interactions of the Flavobacterium species with plants, the molecular mechanisms and bacterial determinants underlying these interactions remain unclear. To broaden our understanding of the genus Flavobacterium's role in plant health, we review the recent studies focusing on their ecological niche, functional roles, and determinants in plant-beneficial interactions. Additionally, this review discusses putative mechanisms explaining the interactions between plants and Flavobacterium. We have also introduced the importance of future research on Flavobacterium spp. and its potential applications in agriculture.

3.
Plants (Basel) ; 13(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38475483

RESUMO

Inorganic phosphate (Pi) homeostasis plays an important role in plant growth and abiotic stress tolerance. Several MYB-CC transcription factors involved in Pi homeostasis have been identified in rice (Oryza sativa). PHOSPHATE STARVATION RESPONSE-LIKE 7 (PHL7) is a class II MYC-CC protein, in which the MYC-CC domain is located at the N terminus. In this study, we established that OsPHL7 is localized to the nucleus and that the encoding gene is induced by Pi deficiency. The Pi-responsive genes and Pi transporter genes are positively regulated by OsPHL7. The overexpression of OsPHL7 enhanced the tolerance of rice plants to Pi starvation, whereas the RNA interference-based knockdown of this gene resulted in increased sensitivity to Pi deficiency. Transgenic rice plants overexpressing OsPHL7 produced more roots than wild-type plants under both Pi-sufficient and Pi-deficient conditions and accumulated more Pi in the shoots and roots. In addition, the overexpression of OsPHL7 enhanced rice tolerance to salt stress. Together, these results demonstrate that OsPHL7 is involved in the maintenance of Pi homeostasis and enhances tolerance to Pi deficiency and salt stress in rice.

4.
Plant Pathol J ; 39(5): 417-429, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37817490

RESUMO

Ralstonia solanacearum species complex (RSSC) is a soil borne plant pathogen causing bacterial wilt on various important crops, including Solanaceae plants. The bacterial pathogens within the RSSC produce exopolysaccharide (EPS), a highly complicated nitrogen-containing heteropolymeric polysaccharide, as a major virulence factor. However, the biosynthetic pathway of the EPS in the RSSC has not been fully characterized. To identify genes in EPS production beyond the EPS biosynthetic gene operon, we selected the EPS-defective mutants of R. pseudosolanacearum strain SL341 from Tn5-inserted mutant pool. Among several EPS-defective mutants, we identified a mutant, SL341P4, with a Tn5-insertion in a gene encoding a putative NDP-sugar epimerase, a putative membrane protein with sugar-modifying moiety, in a reverse orientation to EPS biosynthesis gene cluster. This protein showed similar to other NDP-sugar epimerases involved in EPS biosynthesis in many phytopathogens. Mutation of the NDP-sugar epimerase gene reduced EPS production and biofilm formation in R. pseudosolanacearum. Additionally, the SL341P4 mutant exhibited reduced disease severity and incidence of bacterial wilt in tomato plants compared to the wild-type SL341 without alteration of bacterial multiplication. These results indicate that the NDP-sugar epimerase gene is required for EPS production and bacterial virulence in R. pseudosolanacearum.

5.
Front Plant Sci ; 13: 1030720, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466249

RESUMO

Plant bacterial disease is a complex outcome achieved through a combination of virulence factors that are activated during infection. However, the common virulence factors across diverse plant pathogens are largely uncharacterized. Here, we established a pan-genome shared across the following plant pathogens: Burkholderia glumae, Ralstonia solanacearum, and Xanthomonas oryzae pv. oryzae. By overlaying in planta transcriptomes onto the pan-genome, we investigated the expression profiles of common genes during infection. We found over 70% of identical patterns for genes commonly expressed by the pathogens in different plant hosts or infection sites. Co-expression patterns revealed the activation of a signal transduction cascade to recognize and respond to external changes within hosts. Using mutagenesis, we uncovered a relationship between bacterial virulence and functions highly conserved and shared in the studied genomes of the bacterial phytopathogens, including flagellar biosynthesis protein, C4-dicarboxylate ABC transporter, 2-methylisocitrate lyase, and protocatechuate 3,4-dioxygenase (PCD). In particular, the disruption of PCD gene led to attenuated virulence in all pathogens and significantly affected phytotoxin production in B. glumae. This PCD gene was ubiquitously distributed in most plant pathogens with high homology. In conclusion, our results provide cross-species in planta models for identifying common virulence factors, which can be useful for the protection of crops against diverse pathogens.

6.
Anal Chim Acta ; 1233: 340423, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36283792

RESUMO

Early diagnosis and monitoring of cancer is the best way to increase the survival rate among patients with cancer. However, the current cancer screening technology is expensive and time-consuming; hence, cancer screening remains challenging. Therefore, developing a relatively inexpensive and high-performance analytical method is necessary. Especially, mutations in KRAS can be characterized as single nucleotide polymorphism mutations. Therefore, discrimination of single nucleotide polymorphism is essential to detect cancer mutations. This study introduces a method with high sensitivity and selectivity of real-time PCR using peptide nucleic acid (PNA) and RNase H II to detect KRAS single nucleotide polymorphism. This method was developed via the fusion of the existing PNA clamping PCR technique and the RNase H-dependent PCR technique. A synergistic effect was realized by mitigating the shortcomings of each method. Our method had a detection limit of 1 aM and selectivity of 0.01%. This study demonstrated completed validation tests with DNA-spiked plasma sample analysis, cell culture, and analysis of blood samples collected from patients with cancer. Furthermore, we demonstrated the applicability of this method for breath biopsy.


Assuntos
Neoplasias , Ácidos Nucleicos Peptídicos , Humanos , Ácidos Nucleicos Peptídicos/genética , Polimorfismo de Nucleotídeo Único , Ribonuclease H , Proteínas Proto-Oncogênicas p21(ras)/genética , Mutação , Reação em Cadeia da Polimerase em Tempo Real/métodos , DNA
7.
Sensors (Basel) ; 22(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35957265

RESUMO

In recent years, due to the ubiquitous presence of WiFi access points in buildings, the WiFi fingerprinting method has become one of the most promising approaches for indoor positioning applications. However, the performance of this method is vulnerable to changes in indoor environments. To tackle this challenge, in this paper, we propose a novel WiFi fingerprinting method that uses the valued tolerance rough set theory-based classification method. In the offline phase, the conventional received signal strength (RSS) fingerprinting database is converted into a decision table. Then a new fingerprinting database with decision rules is constructed based on the decision table, which includes the credibility degrees and the support object set values for all decision rules. In the online phase, various classification levels are applied to find out the best match between the RSS values in the decision rules database and the measured RSS values at the unknown position. The experimental results compared the performance of the proposed method with those of the nearest-neighbor-based and the random statistical methods in two different test cases. The results show that the proposed method greatly outperforms the others in both cases, where it achieves high accuracy with 98.05% of right position classification, which is approximately 50.49% more accurate than the others. The mean positioning errors at wrong estimated positions for the two test cases are 1.71 m and 1.99 m, using the proposed method.


Assuntos
Algoritmos
8.
Microbiol Resour Announc ; 11(7): e0027822, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35670579

RESUMO

Here, we report the genome sequence of Ralstonia pseudosolanacearum (R. solanacearum phylotype I) strain SL1931 (KACC10711), isolated from pepper (Capsicum annuum L.) stems; R. solanacearum is the causal pathogen of bacterial wilt. Strain SL1931 had a different type III effector profile than that of the reference genome strain GMI1000.

9.
Appl Microbiol Biotechnol ; 106(9-10): 3837-3848, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35562488

RESUMO

Bacteriophages (phages) have been proposed as promising alternative pesticides against various bacterial diseases of crops. However, the efficacy of phages in managing plant bacterial diseases is variable and poorly understood in natural settings. In this study, two lytic phages, RpT1 and RpY2, were investigated for their biocontrol potential against bacterial wilt by Ralstonia pseudosolanacearum invasion in tomato plants. The two phages possess similar morphology and genome organization to those of the Autographiviridae family with a broad host range. Treatment with the two phages (alone or in combination) resulted in a significant reduction in bacterial wilt incidence. Three days post-treatment with phages, which was performed after R. pseudosolanacearum inoculation with a specified density of 108 PFU (plaque forming units)/g of soil, led to the most effective biocontrol activity compared to other treatments and a lower density of phage. A phage cocktail containing both RpT1 and RpY2 suppressed disease symptoms in agricultural soils, mimicking their ability to control diseases in natural settings. Furthermore, supplementation with specific adjuvants enhanced the biocontrol potential of both phages. The persistence of the two phages under various environmental conditions indicates their stable activity in soils. Consequently, the consistent biocontrol activity of these phages provides insights into the proper application, timing, and density of phages for effective phage therapy in bacterial wilt control in tomato. KEY POINTS: • Biocontrol potential of phages in natural settings individually and as a cocktail. • Apparent long-term persistence of phages in natural soils, various temperatures, and pH. • An effective approach for developing phages for biocontrol.


Assuntos
Bacteriófagos , Solanum lycopersicum , Bactérias , Bacteriófagos/genética , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Solo
10.
Biosens Bioelectron ; 210: 114295, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35477153

RESUMO

The detection of nucleic acids in biofluids is essential for changing the paradigm of disease diagnosis. As there are very few nucleic acids present in human biofluids, a high sensitivity method is required to detect nucleic acids for disease diagnosis. The Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation is associated with non-small cell lung cancer. It is a point mutation and requires a highly selective detection technique. In this study, high sensitivity and selectivity were achieved for the detection of KRAS mutation using rolling circle amplification (RCA), atomic transfer radical polymerization (ATRP), mutS enzyme, and electrochemical sensors. Although RCA can isothermally amplify DNA, it has low selectivity for detecting single-base mismatch DNA, and its sensitivity is not suitable for circulating tumor DNA detection. The selectivity of RCA was improved by using mutS, which can bind specifically to point mutations. In addition, as a method of isothermal radical polymerization, ATRP was used to amplify the weak signal of RCA. Since RCA and ATRP reactions occur simultaneously, detection time was reduced, and the calculated detection limit was 3.09 aM. Computational and experimental analyses were conducted to verify each detection step and the combination of mutS, ATRP, and RCA. The experiment was performed using normal human serum samples for biological application, and the proposed detection method was confirmed to have excellent potential for diagnosing cancer patients.


Assuntos
Técnicas Biossensoriais , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Técnicas Biossensoriais/métodos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , DNA/genética , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Mutação Puntual , Polimerização , Proteínas Proto-Oncogênicas p21(ras)/genética
11.
Antibiotics (Basel) ; 10(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34943708

RESUMO

Bacteriophages are viruses that specifically infect a bacterial host. They play a great role in the modern biotechnology and antibiotic-resistant microbe era. Since the discovery of phages, their application as a control agent has faced challenges that made antibiotics a better fit for combating pathogenic bacteria. Recently, with the novel sequencing technologies providing new insight into the nature of bacteriophages, their application has a second chance to be used. However, novel challenges need to be addressed to provide proper strategies for their practical application. This review focuses on addressing these challenges by initially introducing the nature of bacteriophages and describing the phage-host-dependent strategies for phage application. We also describe the effect of the long-term application of phages in natural environments and other bacterial communities. Overall, this review gathered crucial information for the future application of phages. We predict the use of phages will not be the only control strategy against pathogenic bacteria. Therefore, more studies must be done for low-risk control methods against antimicrobial-resistant bacteria.

12.
J Chem Phys ; 155(18): 184704, 2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34773948

RESUMO

The interaction of divalent copper ions (Cu2+) with cell membranes is crucial for a variety of physiological processes of cells, such as hormone synthesis and cellular energy production. These interactions would not be possible without membrane hydration. However, the role of water has not received a lot of attention in membrane studies. Here, we use high-throughput wide-field second harmonic (SH) microscopy to study the interaction between Cu2+ and hydrated freestanding Montal-Müller lipid membranes. The symmetric lipid membranes are composed of 1,2-diphytanoyl-sn-glycero-3-phosphocholine and either 1,2-diphytanoyl-sn-glycero-3-phosphate or 1,2-diphytanoyl-sn-glycero-3-phospho L-serine and are brought into contact with divalent Cu2+, which are added to one leaflet while maintaining the ionic strength balance. We observe transient domains of high SH intensity. In these areas, Cu2+ ions bind to the charged head groups, leading to charge neutralization on one side of the membrane. This exposes the ordered water at the non-interacting side of the membrane interface, which can be used to compute the interfacial membrane potential difference. We find that the domains of lipids with phosphatidic acid head groups display a higher interfacial membrane potential than those with phosphatidylserine head groups, which converts into higher dynamic electrostatic free energies and binding constants.


Assuntos
Cobre/química , Bicamadas Lipídicas/química , Fosfolipídeos/química , Microscopia de Geração do Segundo Harmônico , Água/análise , Água/química
13.
Int J Syst Evol Microbiol ; 71(10)2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34596509

RESUMO

A bacterial strain, designated TCH3-2T, was isolated from the rhizosphere of tomato plant grown at Dong-A University Agricultural Experiment Station, Republic of Korea. The strain was Gram-stain-negative, obligate aerobic, orange yellow-coloured, motile by gliding and short rod-shaped. Strain TCH3-2 T only grew on 1/2 tryptic soy agar and Luria-Bertani agar among the media tested, with optimum growth at 28 °C and pH 7. Salt of 1 % NaCl was necessary to support the growth of TCH3-2T. Strain TCH3-2T produced flexirubin-type pigments. The predominant cellular fatty acids were iso-C15 : 0 (55.6 %), iso-C17 : 0 3-OH (17.9 %), summed feature 9 (comprising C16 : 0 10-methyl and/or iso-C17 : 1 ω9c; 10.5 %), iso-C15 : 0 3-OH (4.8 %) and anteiso-C15 : 0 (2.3 %). The major menaquinone was menaquinone-6 and the major polar lipids were phosphatidylethanolamine, five unknown aminolipids and three unknown lipids. Phylogenetic analysis based on 16S rRNA sequences indicated that TCH3-2T was closely related to Flavobacterium ummariense DS-12T (95.16 %), Flavobacterium marinum SW105T (95.14 %) and Flavobacterium viscosus YIM 102796T (94.54 %). The draft genome of TCH3-2T comprised ca. 2.8 Mb with a G+C content of 34.61 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between TCH3-2T and closely related Flavobacterium species showed that it belongs to a distinct species. Furthermore, the results of morphological, physiological and biochemical tests allowed further phenotypic differentiation of TCH3-2T from its closest relatives. Thus, chemotaxonomic characteristics together with phylogenetic affiliation illustrate that TCH3-2T represents a novel species of the genus Flavobacterium, for which the name Flavobacterium dauae sp. nov. (type strain TCH3-2T=KACC 19054T=JCM 34025T) is proposed.


Assuntos
Flavobacterium , Filogenia , Rizosfera , Microbiologia do Solo , Solanum lycopersicum , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacterium/classificação , Flavobacterium/isolamento & purificação , Solanum lycopersicum/microbiologia , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
14.
Nanotechnology ; 32(50)2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34433151

RESUMO

Recently, the demand for the sensitive detection of nanomaterials and biomolecules has been increasing for evaluating the toxicity of nanomaterials and early diagnosis of diseases. Although many studies have developed new detection assays, these are heavily influenced by the capabilities of the detection equipment. Therefore, the aim of the present study was to improve electrode performance by modifying the surface of the detection electrode using a simple method. Electrode surface modification was performed using carbon nanotubes (CNT) and porous gold nanostructures (NS) with excellent electrical and chemical properties. Through the simple physical deposition of CNT and electrochemical reduction of NS, the increasement of the electrode surface area was achieved. Because of the CNTs attached to the electrodes at the first step, the metal ions constituting the NS can adhere well to the electrodes. Nanoparticles with a porous structure can be generated through electrochemical reduction (cyclic voltammetry) of metal ions attached to electrodes. Consequently, the surface area of the electrode increased and electrochemical performance was improved (confirmed by atomic force microscopy, Nyquist plot and Bode plot). To quantitatively confirm the improvement of electrode performance according to the surface change through the proposed treatment technique, DNA was detected. Unlike previous surface modification studies, the developed surface treatment technique can be applied to a variety of detection equipment. To confirm this, the detection was performed using two detection devices with different operating principles. DNA detection using the two types of equipment confirmed that the detection limit was increased by approximately 1000-fold through applying a simple surface treatment. In addition, this method is applicable to detect various sizes of nanomaterials. The method proposed in this study is simple and has the advantage that it can be applied to various devices and various materials.

15.
Curr Microbiol ; 78(5): 2044-2050, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33835234

RESUMO

Ralstonia solanacearum species complex is deleterious plant pathogenic bacteria causing bacterial wilt in the members of solanaceous crops and the bacterial wilt is difficult to control. Bacteriophages-based biocontrol is an environmentally friendly and promising strategy to control bacterial plant diseases. In this study, we isolated 72 phages from the various crop cultivated soils in Korea using five different strains of R. solanacearum. Among 72 phages, phage RpY1 was selected for further study based on the specificity of the targeted host. This phage was identified as a member of Podoviridae with a head measuring 60-70 nm in length and short tail according to the morphology of transmission electron microscopy images. The genome size of phage RpY1 is 43,284 bp with G + C content of 61.4% and 53 open reading frames (ORFs), including 18 annotated ORFs and 35 hypothetical proteins. This phage genome showed no homology to the genome of known phages except for the DU_RP_II phage infecting R. solanacearum; however, the host range of phage RpY1 is much narrower than that of DU_RP_II.


Assuntos
Bacteriófagos , Podoviridae , Ralstonia solanacearum , Bacteriófagos/genética , DNA Viral/genética , Genoma Viral , Fases de Leitura Aberta , Podoviridae/genética , Ralstonia solanacearum/genética , República da Coreia , Análise de Sequência de DNA
16.
J Microbiol ; 59(3): 281-291, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33624265

RESUMO

Plants rooted in soil have intimate associations with a diverse array of soil microorganisms. While the microbial diversity of soil is enormous, the predominant bacterial phyla associated with plants include Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, and Verrucomicrobia. Plants supply nutrient niches for microbes, and microbes support plant functions such as plant growth, development, and stress tolerance. The interdependent interaction between the host plant and its microbes sculpts the plant microbiota. Plant and microbiome interactions are a good model system for understanding the traits in eukaryotic organisms from a holobiont perspective. The holobiont concept of plants, as a consequence of co-evolution of plant host and microbiota, treats plants as a discrete ecological unit assembled with their microbiota. Dissection of plant-microbiome interactions is highly complicated; however, some reductionist approaches are useful, such as the synthetic community method in a gnotobiotic system. Deciphering the interactions between plant and microbiome by this reductionist approach could lead to better elucidation of the functions of microbiota in plants. In addition, analysis of microbial communities' interactions would further enhance our understanding of coordinated plant microbiota functions. Ultimately, better understanding of plantmicrobiome interactions could be translated to improvements in plant productivity.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Plantas/microbiologia , Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Interações Microbianas , Fenômenos Fisiológicos Vegetais , Microbiologia do Solo
17.
Plant Pathol J ; 36(4): 355-363, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32788894

RESUMO

Bacterial traits for virulence of Ralstonia solanacearum causing lethal wilt in plants were extensively studied but are not yet fully understood. Other than the known virulence factors of Ralstonia solanacearum, this study aimed to identify the novel gene(s) contributing to bacterial virulence of R. solanacearum. Among the transposon-inserted mutants that were previously generated, we selected mutant SL341F12 strain produced exopolysaccharide equivalent to wild type strain but showed reduced virulence compared to wild type. In this mutant, a transposon was found to disrupt the murI gene encoding glutamate racemase which converts L-glutamate to D-glutamate. SL341F12 lost its motility, and its virulence in the tomato plant was markedly diminished compared to that of the wild type. The altered phenotypes of SL341F12 were restored by introducing a full-length murI gene. The expression of genes required for flagella assembly was significantly reduced in SL341F12 compared to that of the wild type or complemented strain, indicating that the loss of bacterial motility in the mutant was due to reduced flagella assembly. A dramatic reduction of the mutant population compared to its wild type was apparent in planta (i.e., root) than its wild type but not in soil and rhizosphere. This may contribute to the impaired virulence in the mutant strain. Accordingly, we concluded that murI in R. solanacearum may be involved in controlling flagella assembly and consequently, the mutation affects bacterial motility and virulence.

18.
Front Plant Sci ; 11: 1186, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849735

RESUMO

Plant-associated microbiota plays an important role in plant disease resistance. Bacterial wilt resistance of tomato is a function of the quantitative trait of tomato plants; however, the mechanism underlying quantitative resistance is unexplored. In this study, we hypothesized that rhizosphere microbiota affects the resistance of tomato plants against soil-borne bacterial wilt caused by Ralstonia solanacearum. This hypothesis was tested using a tomato cultivar grown in a defined soil with various microbiota transplants. The bacterial wilt-resistant Hawaii 7996 tomato cultivar exhibited marked suppression and induction of disease severity after treatment with upland soil-derived and forest soil-derived microbiotas, respectively, whereas the transplants did not affect the disease severity in the susceptible tomato cultivar Moneymaker. The differential resistance of Hawaii 7996 to bacterial wilt was abolished by diluted or heat-killed microbiota transplantation. Microbial community analysis revealed the transplant-specific distinct community structure in the tomato rhizosphere and the significant enrichment of specific microbial operational taxonomic units (OTUs) in the rhizosphere of the upland soil microbiota-treated Hawaii 7996. These results suggest that the specific transplanted microbiota alters the bacterial wilt resistance in the resistant cultivar potentially through a priority effect.

19.
FEBS J ; 287(21): 4710-4728, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32112503

RESUMO

The synthetic biocide triclosan targets enoyl-acyl carrier protein reductase(s) (ENR) in bacterial type II fatty acid biosynthesis. Screening and sequence analyses of the triclosan resistome from the soil metagenome identified a variety of triclosan-resistance ENRs. Interestingly, the mode of triclosan resistance by one hypothetical protein was elusive, mainly due to a lack of sequence similarity with other proteins that mediate triclosan resistance. Here, we carried out a structure-based function prediction of the hypothetical protein, herein referred to as FabMG, and in vivo and in vitro functional analyses. The crystal structure of FabMG showed limited structural homology with FabG and FabI, which are also involved in type II fatty acid synthesis. In vivo complementation and in vitro activity assays indicated that FabMG is functionally a FabI-type ENR that employs NADH as a coenzyme. Variations in the sequence and structure of FabMG are likely responsible for inefficient binding of triclosan, resulting in triclosan resistance. These data unravel a previously uncharacterized FabMG, which is prevalent in various microbes in triclosan-contaminated environments and provide mechanistic insight into triclosan resistance.


Assuntos
Bactérias/genética , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/genética , Metagenoma/genética , Triclosan/farmacologia , Sequência de Aminoácidos , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biocatálise/efeitos dos fármacos , Cristalografia por Raios X , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/classificação , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Inibidores da Síntese de Ácidos Graxos/farmacologia , Modelos Moleculares , Filogenia , Conformação Proteica , Homologia de Sequência de Aminoácidos , Microbiologia do Solo
20.
ACS Appl Mater Interfaces ; 12(9): 10563-10570, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32048828

RESUMO

The rising demand for eradicating hazardous substances in the workplace has motivated vigorous researches on environmentally sustainable manufacturing processes of colloidal quantum dots (QDs) for their optoelectronic applications. Despite remarkable achievements witnessed in QD materials (e.g., Pb- or Cd-free QDs), the progress in the eco-friendly process is far falling behind and thus the practical use of QDs. Herein, a complete "green" process of QDs, which excludes environmentally unfriendly elements from QDs, ligands, or solvents, is presented. The implant of mono-2-(methacryloyloxy)ethyl succinate (MMES) ligands renders InP/ZnSexS1-x QDs dispersed in eco-friendly polar solvents that are widely accepted in the industry while keeping the photophysical properties of QDs unchanged. The MMES-capped QDs show exceptional colloidal stabilities in a range of green polar solvents that permit uniform inkjet printing of QD dispersion. In addition, MMES-capped QDs are also compatible with commercially available photo-patternable resins, and the cross-linkable moiety within MMES further facilitates the achievement in the formation of well-defined, micrometer-scale patterning of QD optical films. The presented materials, all composed of simple, scalable, and environmentally safe compounds, promise low environmental impact during the processing of QDs and thus will catalyze the practicable use of QDs in a variety of optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...