Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6374, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075067

RESUMO

Transcription-blocking DNA lesions are specifically targeted by transcription-coupled nucleotide excision repair (TC-NER), which removes a broad spectrum of DNA lesions to preserve transcriptional output and thereby cellular homeostasis to counteract aging. TC-NER is initiated by the stalling of RNA polymerase II at DNA lesions, which triggers the assembly of the TC-NER-specific proteins CSA, CSB and UVSSA. CSA, a WD40-repeat containing protein, is the substrate receptor subunit of a cullin-RING ubiquitin ligase complex composed of DDB1, CUL4A/B and RBX1 (CRL4CSA). Although ubiquitination of several TC-NER proteins by CRL4CSA has been reported, it is still unknown how this complex is regulated. To unravel the dynamic molecular interactions and the regulation of this complex, we apply a single-step protein-complex isolation coupled to mass spectrometry analysis and identified DDA1 as a CSA interacting protein. Cryo-EM analysis shows that DDA1 is an integral component of the CRL4CSA complex. Functional analysis reveals that DDA1 coordinates ubiquitination dynamics during TC-NER and is required for efficient turnover and progression of this process.


Assuntos
Proteínas de Ligação a DNA , Reparo por Excisão , Ubiquitina-Proteína Ligases , Humanos , Microscopia Crioeletrônica , Proteínas Culina/metabolismo , Proteínas Culina/genética , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Células HEK293 , Ligação Proteica , Receptores de Interleucina-17 , Transcrição Gênica , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
2.
Res Sq ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37886519

RESUMO

Transcription-blocking DNA lesions are specifically targeted by transcription-coupled nucleotide excision repair (TC-NER), which removes a broad spectrum of DNA lesions to preserve transcriptional output and thereby cellular homeostasis to counteract aging. TC-NER is initiated by the stalling of RNA polymerase II at DNA lesions, which triggers the assembly of the TC-NER-specific proteins CSA, CSB and UVSSA. CSA, a WD40-repeat containing protein, is the substrate receptor subunit of a cullin-RING ubiquitin ligase complex composed of DDB1, CUL4A/B and RBX1 (CRL4CSA). Although ubiquitination of several TC-NER proteins by CRL4CSA has been reported, it is still unknown how this complex is regulated. To unravel the dynamic molecular interactions and the regulation of this complex, we applied a single-step protein-complex isolation coupled to mass spectrometry analysis and identified DDA1 as a CSA interacting protein. Cryo-EM analysis showed that DDA1 is an integral component of the CRL4CSA complex. Functional analysis revealed that DDA1 coordinates ubiquitination dynamics during TC-NER and is required for efficient turnover and progression of this process.

3.
Methods Mol Biol ; 1703: 153-159, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29177740

RESUMO

Hemicatenane is a structure that forms when two DNA duplexes are physically linked through a single-stranded crossover. It is proposed to be an intermediate resulting from double Holliday junction (dHJ) dissolution, repair of replication stalled forks and late stage replication. Our previous study has shown that hemicatenane can be synthesized and dissolved in vitro by hyperthermophilic type IA topoisomerases. Here we present the protocol of hemicatenane synthesis and its structure detection by 2D agarose gel electrophoresis. The generated product can be used as a substrate to study the biochemical mechanism of hemicatenane processing reactions.


Assuntos
Catenanos/síntese química , DNA Topoisomerases Tipo I/metabolismo , Nanoarchaeota/enzimologia , Proteínas Arqueais/metabolismo , Catenanos/metabolismo , Replicação do DNA , Eletroforese em Gel Bidimensional , Conformação de Ácido Nucleico
4.
Elife ; 42015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26682650

RESUMO

Holliday junctions (HJs) are key DNA intermediates in homologous recombination. They link homologous DNA strands and have to be faithfully removed for proper DNA segregation and genome integrity. Here, we present the crystal structure of human HJ resolvase GEN1 complexed with DNA at 3.0 Å resolution. The GEN1 core is similar to other Rad2/XPG nucleases. However, unlike other members of the superfamily, GEN1 contains a chromodomain as an additional DNA interaction site. Chromodomains are known for their chromatin-targeting function in chromatin remodelers and histone(de)acetylases but they have not previously been found in nucleases. The GEN1 chromodomain directly contacts DNA and its truncation severely hampers GEN1's catalytic activity. Structure-guided mutations in vitro and in vivo in yeast validated our mechanistic findings. Our study provides the missing structure in the Rad2/XPG family and insights how a well-conserved nuclease core acquires versatility in recognizing diverse substrates for DNA repair and maintenance.

5.
Proc Natl Acad Sci U S A ; 110(38): E3587-94, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24003117

RESUMO

Type IA DNA topoisomerases work with a unique mechanism of strand passage through an enzyme-bridged, ssDNA gate, thus enabling them to carry out diverse reactions in processing structures important for replication, recombination, and repair. Here we report a unique reaction mediated by an archaeal type IA topoisomerase, the synthesis and dissolution of hemicatenanes. We cloned, purified, and characterized an unusual type IA enzyme from a hyperthermophilic archaeum, Nanoarchaeum equitans, which is split into two pieces. The recombinant heterodimeric enzyme has the expected activities in its preference of relaxing negatively supercoiled DNA. Its amino acid sequence and cleavage site sequence analysis suggest that it is topoisomerase III, and therefore we named it "NeqTop3." At high enzyme concentrations, NeqTop3 can generate high-molecular-weight DNA networks. Biochemical and electron microscopic data indicate that the DNA networks are connected through hemicatenane linkages. The hemicatenane formation likely is mediated by the single-strand passage through denatured bubbles in the substrate DNA under high temperature. NeqTop3 at lower concentrations can reverse hemicatenanes. A complex of human topoisomerase 3α, Bloom helicase, and RecQ-mediated genome instability protein 1 and 2 can partially disentangle the hemicatenane network. Both the formation and dissolution of hemicatenanes by type IA topoisomerases demonstrate that these enzymes have an important role in regulating intermediates from replication, recombination, and repair.


Assuntos
Proteínas de Transporte/metabolismo , Catenanos/metabolismo , DNA Topoisomerases Tipo I/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Nanoarchaeota/enzimologia , Proteínas Nucleares/metabolismo , RecQ Helicases/metabolismo , Sequência de Bases , Proteínas de Transporte/genética , Clonagem Molecular , DNA Topoisomerases Tipo I/genética , Proteínas de Ligação a DNA/genética , Humanos , Microscopia Eletrônica , Dados de Sequência Molecular , Proteínas Nucleares/genética , RecQ Helicases/genética , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...