Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 348: 123803, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38521399

RESUMO

Various numerical experiments using WRF (Weather Research & Forecasting Model) and CMAQ (Community Multiscale Air Quality Modeling System) were performed to analyze the phenomenon of rapidly high concentration PM2.5 after the passage of a cold front in an area with limited local emissions. The episode period was from January 14 to 23, 2018, and analysis was conducted by dividing it into two stages according to the characteristics of changes in PM2.5 concentrations during the period. Through the analysis of observational data during the episode period, we confirmed meteorological impacts (decrease in temperature, increase in wind speed and relative humidity) and an increase in air pollution (PM10 and PM2.5) attributed to the passage of a cold front. Using CMAQ's IPR (Integrated Process Rate) analysis, the contribution of the horizontal advection process was observed in transporting PM2.5 to Gangneung at higher altitudes, and the PM2.5 concentrations at the surface increased because the vertical advection process was influenced by the terrain. Notably, in Stage 2 (64 µg·m-3), a higher contribution of the vertical advection process compared to Stage 1 (35 µg·m-3) was observed, which is attributed to the differences in synoptic patterns following the passage of the cold front. During Stage 2, following the cold front, atmospheric stability (dominance of high-pressure system) led to air subsidence and the presence of a temperature inversion layer, creating favorable meteorological conditions for the accumulation of air pollutants. This study offers the mechanisms of air pollution over the Korean Peninsula under non-stationary meteorological conditions, particularly in relation to the passage of the cold front (low-pressure system). Notably, the influence of a cold front can vary according to the synoptic patterns that develop following its passage.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado/análise , Monitoramento Ambiental , Poluição do Ar/análise , Poluentes Atmosféricos/análise , República da Coreia , China , Estações do Ano
2.
PLoS One ; 17(8): e0267895, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35939425

RESUMO

Recent rapid industrial development in the Korean Peninsula has increased the impacts of meteorological disasters on marine and coastal environments. In particular, marine fog driven by summer cold water masses can inhibit transport and aviation; yet a lack of observational data hinders our understanding of this phenomena. The present study aimed to analyze the differences in cold water mass formation according to sea surface temperature (SST) resolution and its effects on the occurrence and distribution of sea fog over the Korean Peninsula from June 23-July 1, 2016, according to the Weather Research and Forecasting model. Data from the Final Operational Model Global Tropospheric Analyses were provided at 1° and 0.25° resolutions and NOAA real-time global SST (RTG-SST) data were provided at 0.083°. While conventional analyses have used initial SST distributions throughout the entire simulation period, small-scale, rapidly developing oceanic phenomena (e.g., cold water masses) lasting for several days act as an important mediating factor between the lower atmosphere and sea. RTG-SST was successful at identifying fog presence and maintained the most extensive horizontal distribution of cold water masses. In addition, it was confirmed that the difference in SST resolution led to varying sizes and strengths of the warm pools that provided water vapor from the open sea area to the atmosphere. On examining the horizontal water vapor transport and the vertical structure of the generated sea fog using the RTG-SST, water vapors were found to be continuously introduced by the southwesterly winds from June 29 to 30, creating a fog event throughout June 30. Accordingly, high-resolution SST data must be input into numerical models whenever possible. It is expected that the findings of this study can contribute to the reduction of ship accidents via the accurate simulation of sea fog.


Assuntos
Atmosfera , Vapor , Atmosfera/química , Oceanos e Mares , Estações do Ano , Tempo (Meteorologia)
3.
Int J Biometeorol ; 66(10): 2069-2082, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35915161

RESUMO

Understanding the CO2 flux over agricultural crop fields is critical because the temporal cycle is driven by both ecological environment and anthropogenic change. We analyzed the net ecosystem exchange of CO2 measured over a barley-rice double-cropping field using the eddy covariance method for 5 years. We conducted gap-filling based on u*-threshold criteria and partitioned the net ecosystem exchange into gross primary production and respiration. The relative importance analysis of solar radiation, temperature, soil heat flux, soil water content, and vapor deficit revealed that solar radiation and temperature were the dominant contributors to net ecosystem exchange. The annual variation in the net ecosystem exchange followed a bimodal pattern driven by CO2 uptake by both barley and rice, displaying two negative peaks in late April and mid-August. The elongation stages of the crops exhibited the highest flux. Gross primary production and respiration were closely related to solar radiation and nighttime temperature, respectively. The relative importance of the other environmental variables was affected by the cultivation season and irrigation water. In the period of rice cultivation, respiration was approximately 3 µmol m-2 s-1 higher during rice drainage than during the flooded period. The accumulated net ecosystem production was estimated to be 315 gC m-2 and 349 gC m-2 for the barley and rice growing periods, respectively, and 649 gC m-2 for the annual total. These values are comparable with the results of other studies on barley-rice double-cropping fields.


Assuntos
Hordeum , Oryza , Dióxido de Carbono/análise , Ecossistema , República da Coreia , Estações do Ano , Solo , Água
4.
Sci Total Environ ; 613-614: 820-828, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28942315

RESUMO

This study investigates a significant biomass burning (BB) event occurred in Colorado of the United States in 2012 using the Community Multi-scale Air Quality (CMAQ) model. The simulation reasonably reproduced the significantly high upper tropospheric O3 concentrations (up to 145ppb) caused by BB emissions. We find the BB-induced O3 was primarily affected by chemical reactions and dispersion during its transport. In the early period of transport, high NOx and VOCs emissions caused O3 production due to reactions with the peroxide and hydroxyl radicals, HO2 and OH. Here, NOx played a key role in O3 formation in the BB plume. The results indicated that HO2 in the BB plume primarily came from formaldehyde (HCHO+hv=2HO2+CO), a secondary alkoxy radical (ROR=HO2). CO played an important role in the production of recycled HO2 (OH+CO=HO2) because of its abundance in the BB plume. The chemically produced HO2 was largely converted to OH by the reactions with NO (HO2+NO=OH+NO2) from BB emissions. This is in contrast to the surface, where HO2 and OH are strongly affected by VOC and HONO, respectively. In the late stages of transport, the O3 concentration was primarily controlled by dispersion. It stayed longer in the upper troposphere compared to the surface due to sustained depletion of NOx. Sensitivity analysis results support that O3 in the BB plume is significantly more sensitive to NOx than VOCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...