Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 685, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755020

RESUMO

Constructing a mono-atom step-level ultra-flat material surface is challenging, especially for thin films, because it is prohibitively difficult for trillions of clusters to coherently merge. Even though a rough metal surface, as well as the scattering of carriers at grain boundaries, limits electron transport and obscures their intrinsic properties, the importance of the flat surface has not been emphasised sufficiently. In this study, we describe in detail the initial growth of copper thin films required for mono-atom step-level flat surfaces (MSFSs). Deposition using atomic sputtering epitaxy leads to the coherent merging of trillions of islands into a coplanar layer, eventually forming an MSFS, for which the key factor is suggested to be the individual deposition of single atoms. Theoretical calculations support that single sputtered atoms ensure the formation of highly aligned nanodroplets and help them to merge into a coplanar layer. The realisation of the ultra-flat surfaces is expected to greatly assist efforts to improve quantum behaviour by increasing the coherency of electrons.

2.
Nature ; 603(7901): 434-438, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35296844

RESUMO

Oxidation can deteriorate the properties of copper that are critical for its use, particularly in the semiconductor industry and electro-optics applications1-7. This has prompted numerous studies exploring copper oxidation and possible passivation strategies8. In situ observations have, for example, shown that oxidation involves stepped surfaces: Cu2O growth occurs on flat surfaces as a result of Cu adatoms detaching from steps and diffusing across terraces9-11. But even though this mechanism explains why single-crystalline copper is more resistant to oxidation than polycrystalline copper, the fact that flat copper surfaces can be free of oxidation has not been explored further. Here we report the fabrication of copper thin films that are semi-permanently oxidation resistant because they consist of flat surfaces with only occasional mono-atomic steps. First-principles calculations confirm that mono-atomic step edges are as impervious to oxygen as flat surfaces and that surface adsorption of O atoms is suppressed once an oxygen face-centred cubic (fcc) surface site coverage of 50% has been reached. These combined effects explain the exceptional oxidation resistance of ultraflat Cu surfaces.

3.
Nanoscale ; 13(17): 8275-8282, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33890603

RESUMO

There has been growing interest in organic-inorganic hybrid perovskites as a promising candidate for optoelectronic applications due to their superior physical properties. Despite this, most of the reported perovskite devices based on polycrystalline thin films suffer immensely from poor stability and high trap density owing to grain boundaries limiting their performance. Perovskite single crystal structures have been recently explored to construct stable devices and reduce the trap density compared to their thin-film counterparts. We present a novel method of growing sizable CH3NH3PbBr3 single crystals based on the high solubility characteristic of hybrid perovskites at low temperatures within inverse temperature crystallization. We compared both the crystallinity of perovskite single crystal structures and optoelectronic charge transport of single crystal photodetectors as a function of dissolution temperature. The performance of the photodetector fabricated with our large-scaled single crystal with high quality demonstrated low trap density, high mobility, and high photoresponse.

4.
Adv Mater ; 33(15): e2007345, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33751679

RESUMO

Stochastic inhomogeneous oxidation is an inherent characteristic of copper (Cu), often hindering color tuning and bandgap engineering of oxides. Coherent control of the interface between metal and metal oxide remains unresolved. Coherent propagation of an oxidation front in single-crystal Cu thin film is demonstrated to achieve a full-color spectrum for Cu by precisely controlling its oxide-layer thickness. Grain-boundary-free and atomically flat films prepared by atomic-sputtering epitaxy allow tailoring of the oxide layer with an abrupt interface via heat treatment with a suppressed temperature gradient. Color tuning of nearly full-color red/green/blue indices is realized by precise control of the oxide-layer thickness; the samples cover ≈50.4% of the standard red/green/blue color space. The color of copper/copper oxide is realized by the reconstruction of the quantitative yield color from the oxide "pigment" (complex dielectric functions of Cu2 O) and light-layer interference (reflectance spectra obtained from the Fresnel equations) to produce structural color. Furthermore, laser-oxide lithography is demonstrated with micrometer-scale linewidth and depth through local phase transformation to oxides embedded in the metal, providing spacing necessary for semiconducting transport and optoelectronics functionality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA