Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(26): e2314795121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38905241

RESUMO

Oxytocin plays a critical role in regulating social behaviors, yet our understanding of its function in both neurological health and disease remains incomplete. Real-time oxytocin imaging probes with spatiotemporal resolution relevant to its endogenous signaling are required to fully elucidate oxytocin's role in the brain. Herein, we describe a near-infrared oxytocin nanosensor (nIROXT), a synthetic probe capable of imaging oxytocin in the brain without interference from its structural analogue, vasopressin. nIROXT leverages the inherent tissue-transparent fluorescence of single-walled carbon nanotubes (SWCNT) and the molecular recognition capacity of an oxytocin receptor peptide fragment to selectively and reversibly image oxytocin. We employ these nanosensors to monitor electrically stimulated oxytocin release in brain tissue, revealing oxytocin release sites with a median size of 3 µm in the paraventricular nucleus of C57BL/6 mice, which putatively represents the spatial diffusion of oxytocin from its point of release. These data demonstrate that covalent SWCNT constructs, such as nIROXT, are powerful optical tools that can be leveraged to measure neuropeptide release in brain tissue.


Assuntos
Encéfalo , Camundongos Endogâmicos C57BL , Nanotubos de Carbono , Imagem Óptica , Ocitocina , Vasopressinas , Animais , Ocitocina/metabolismo , Camundongos , Imagem Óptica/métodos , Vasopressinas/metabolismo , Nanotubos de Carbono/química , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Masculino , Receptores de Ocitocina/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho/métodos
2.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38766215

RESUMO

Oxytocin is a neuropeptide thought to play a central role in regulating social and emotional behavior. Current techniques for neuropeptide imaging are generally limited in spatial and temporal resolution, real-time imaging capacity, selectivity for oxytocin over vasopressin, and application in young and non-model organisms. To avoid the use of endogenous oxytocin receptors for oxytocin probe development, we employed a protocol to evolve purely synthetic molecular recognition on the surface of near-infrared fluorescent single-walled carbon nanotubes (SWCNT) using single-stranded DNA (ssDNA). This probe reversibly undergoes up to a 172% fluorescence increase in response to oxytocin with a K d of 4.93 µM. Furthermore, this probe responds selectively to oxytocin over oxytocin analogs, receptor agonists and antagonists, and most other neurochemicals. Lastly, we show our probe can image synaptic evoked oxytocin release in live mouse brain slices. Optical probes with the specificity and resolution requisite to image endogenous oxytocin signaling can advance the study of oxytocin neurotransmission for its role in both health and disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...