Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Part A ; 27(17-18): 1192-1204, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33297842

RESUMO

Cells sense and respond to scaffold pore geometry and mechanical stimuli. Many fabrication methods used in bone tissue engineering render structures with poorly controlled pore geometries. Given that cell-scaffold interactions are complex, drawing a conclusion on how cells sense and respond to uncontrolled scaffold features under mechanical loading is difficult. In this study, monodisperse templated scaffolds (MTSC) were fabricated and used as well-defined porous scaffolds to study the effect of dynamic culture conditions on bone-like tissue formation. Human bone marrow-derived stromal cells were cultured on MTSC or conventional salt-leached scaffolds (SLSC) for up to 7 weeks, either under static or dynamic conditions (wall shear stress [WSS] using spinner flask bioreactors). The influence of controlled spherical pore geometry of MTSC subjected to static or dynamic conditions on osteoblast cell differentiation, bone-like tissue formation, structure, and distribution was investigated. WSS generated within the two idealized geometrical scaffold features was assessed. Distinct response to fluid flow in osteoblast cell differentiation were shown to be dependent on scaffold pore geometry. As revealed by collagen staining and microcomputed tomography images, dynamic conditions promoted a more regular extracellular matrix (ECM) formation and mineral distribution in both scaffold types compared with static conditions. The results showed that regulation of bone-related genes and the amount and the structure of mineralized ECM were dependent on scaffold pore geometry and the mechanical cues provided by the two different culture conditions. Under dynamic conditions, SLSC favored osteoblast cell differentiation and ECM formation, whereas MTSC enhanced ECM mineralization. The spherical pore shape in MTSC supported a more trabecular bone-like structure under dynamic conditions compared with MTSC statically cultured or to SLSC under either static or dynamic conditions. These results suggest that cell activity and bone-like tissue formation is driven not only by the pore geometry but also by the mechanical environment. This should be taken into account in the future design of complex scaffolds, which should favor cell differentiation while guiding the formation, structure, and distribution of the engineered bone tissue. This could help to mimic the anatomical complexity of the bone tissue structure and to adapt to each bone defect needs. Impact statement Aging of the human population leads to an increasing need for medical implants with high success rate. We provide evidence that cell activity and the amount and structure of bone-like tissue formation is dependent on the scaffold pore geometry and on the mechanical environment. Fabrication of complex scaffolds comprising concave and planar pore geometries might represent a promising direction toward the tunability and mimicry the structural complexity of the bone tissue. Moreover, the use of fabrication methods that allow a systematic fabrication of reproducible and geometrically controlled structures would simplify scaffold design optimization.


Assuntos
Osteogênese , Alicerces Teciduais , Osso e Ossos , Diferenciação Celular , Células Cultivadas , Humanos , Osteogênese/genética , Engenharia Tecidual , Microtomografia por Raio-X
2.
J Biomech ; 49(3): 344-52, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26772799

RESUMO

It is well-accepted that articular (ART) cartilage composition and tissue architecture are intimately related to mechanical properties. On the other hand, very little information about other cartilage tissues is available, such as elastin-rich auricular (AUR) cartilage. While thorough investigation of ART cartilage has enhanced osteoarthritis research, ear cartilage reconstruction and tissue engineering (TE) could benefit in a similar way from in-depth analysis of AUR cartilage properties. This study aims to explore the constituent-function relationships of AUR cartilage, and how elastin influences mechanical behavior. Stress-relaxation indentation and tensile tests were performed on bovine ART and AUR cartilage. Elastase incubation was performed to simultaneously deplete elastin and sulfated glycosaminoglycans (sGAG), while hyaluronidase incubation was used to deplete sGAG-only, in order to systematically investigate matrix components in material behavior. ART and AUR cartilages showed different viscoelastic behaviors, with AUR cartilage exhibiting a more elastic behavior. Higher equilibrium properties and limited viscous dissipation of strain energy were observed in AUR cartilage, while ART cartilage exhibited a rapid viscous response and high resistance to instantaneous loading. In conclusion, loss of sGAG had no effect on auricular mechanics in contrast to articular cartilage where GAG loss clearly correlated with mechanical properties. Auricular cartilage without elastin lost all compressive mechanical integrity, whereas in articular cartilage this was provided by collagen. This work shows for the first time the involvement of elastin in the mechanical behavior of ear cartilage. In future, this data can be used in AUR cartilage TE efforts to support reproduction of tissue-specific mechanical properties.


Assuntos
Cartilagem Articular/fisiologia , Cartilagem da Orelha/fisiologia , Animais , Fenômenos Biomecânicos , Bovinos , Colágeno/fisiologia , Elasticidade , Elastina/fisiologia , Glicosaminoglicanos/fisiologia , Articulações , Viscosidade
3.
J Biomech ; 48(10): 1721-9, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26065333

RESUMO

It is key for successful auricular (AUR) cartilage tissue-engineering (TE) to ensure that the engineered cartilage mimics the mechanics of the native tissue. This study provides a spatial map of the mechanical and biochemical properties of human auricular cartilage, thus establishing a benchmark for the evaluation of functional competency in AUR cartilage TE. Stress-relaxation indentation (instantaneous modulus, Ein; maximum stress, σmax; equilibrium modulus, Eeq; relaxation half-life time, t1/2; thickness, h) and biochemical parameters (content of DNA; sulfated-glycosaminoglycan, sGAG; hydroxyproline, HYP; elastin, ELN) of fresh human AUR cartilage were evaluated. Samples were categorized into age groups and according to their harvesting region in the human auricle (for AUR cartilage only). AUR cartilage displayed significantly lower Ein, σmax, Eeq, sGAG content; and significantly higher t1/2, and DNA content than NAS cartilage. Large amounts of ELN were measured in AUR cartilage (>15% ELN content per sample wet mass). No effect of gender was observed for either auricular or nasoseptal samples. For auricular samples, significant differences between age groups for h, sGAG and HYP, and significant regional variations for Ein, σmax, Eeq, t1/2, h, DNA and sGAG were measured. However, only low correlations between mechanical and biochemical parameters were seen (R<0.44). In conclusion, this study established the first comprehensive mechanical and biochemical map of human auricular cartilage. Regional variations in mechanical and biochemical properties were demonstrated in the auricle. This finding highlights the importance of focusing future research on efforts to produce cartilage grafts with spatially tunable mechanics.


Assuntos
Cartilagem da Orelha , Engenharia Tecidual , Adulto , DNA/análise , Cartilagem da Orelha/química , Cartilagem da Orelha/fisiologia , Cartilagem da Orelha/transplante , Elastina/análise , Feminino , Glicosaminoglicanos/análise , Humanos , Hidroxiprolina/análise , Masculino , Pessoa de Meia-Idade , Transplantes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...