Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
1.
Mol Cell ; 84(10): 1964-1979.e6, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759628

RESUMO

The role of the mitochondrial electron transport chain (ETC) in regulating ferroptosis is not fully elucidated. Here, we reveal that pharmacological inhibition of the ETC complex I reduces ubiquinol levels while decreasing ATP levels and activating AMP-activated protein kinase (AMPK), the two effects known for their roles in promoting and suppressing ferroptosis, respectively. Consequently, the impact of complex I inhibitors on ferroptosis induced by glutathione peroxidase 4 (GPX4) inhibition is limited. The pharmacological inhibition of complex I in LKB1-AMPK-inactivated cells, or genetic ablation of complex I (which does not trigger apparent AMPK activation), abrogates the AMPK-mediated ferroptosis-suppressive effect and sensitizes cancer cells to GPX4-inactivation-induced ferroptosis. Furthermore, complex I inhibition synergizes with radiotherapy (RT) to selectively suppress the growth of LKB1-deficient tumors by inducing ferroptosis in mouse models. Our data demonstrate a multifaceted role of complex I in regulating ferroptosis and propose a ferroptosis-inducing therapeutic strategy for LKB1-deficient cancers.


Assuntos
Proteínas Quinases Ativadas por AMP , Complexo I de Transporte de Elétrons , Ferroptose , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Proteínas Serina-Treonina Quinases , Ferroptose/genética , Ferroptose/efeitos dos fármacos , Animais , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Camundongos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Linhagem Celular Tumoral , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Quinases Proteína-Quinases Ativadas por AMP/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Mitocôndrias/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Transdução de Sinais , Feminino
2.
Cancer Cell ; 42(4): 513-534, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593779

RESUMO

In cancer treatment, the recurrent challenge of inducing apoptosis through conventional therapeutic modalities, often thwarted by therapy resistance, emphasizes the critical need to explore alternative cell death pathways. Ferroptosis, an iron-dependent form of regulated cell death triggered by the lethal accumulation of lipid peroxides on cellular membranes, has emerged as one such promising frontier in oncology. Induction of ferroptosis not only suppresses tumor growth but also holds potential for augmenting immunotherapy responses and surmounting resistance to existing cancer therapies. This review navigates the role of ferroptosis in tumor suppression. Furthermore, we delve into the complex role of ferroptosis within the tumor microenvironment and its interplay with antitumor immunity, offering insights into the prospect of targeting ferroptosis as a strategic approach in cancer therapy.


Assuntos
Ferroptose , Neoplasias , Humanos , Microambiente Tumoral , Neoplasias/terapia , Imunoterapia , Oncologia
3.
Cancer Res ; 84(7): 961-964, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558130

RESUMO

Conventional cancer therapies typically aim to eliminate tumor cells by inducing cell death. The emergence of resistance to these standard treatments has spurred a shift in focus toward exploring alternative cell death pathways beyond apoptosis. Ferroptosis-an iron-dependent regulated cell death triggered by lipid peroxide accumulation-has gained prominence in cancer research in recent years. Ferroptosis-inducing therapies hold promise for overcoming resistance encountered with conventional treatments. However, challenges, including the lack of distinctive ferroptosis markers and the intricate role of ferroptosis within the tumor microenvironment, currently hinder the clinical translation of these therapies. This perspective article critically outlines these hurdles and highlights unexplored opportunities in ferroptosis research, aiming to refine its therapeutic utilization in combating cancer.


Assuntos
Ferroptose , Neoplasias , Humanos , Apoptose , Morte Celular , Ferro , Peróxidos Lipídicos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
4.
J Colloid Interface Sci ; 665: 711-719, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552586

RESUMO

Zn anodes suffer from the formation of uncontrolled dendrites aggravated by the uneven electric field and the insulating by-product accumulation in aqueous zinc-ion batteries (AZIBs). Here, an effective strategy implemented by 1-butyl-3-methylimidazolium hydrogen sulfate (BMIHSO4) additive is proposed to synergistically tune the crystallographic orientation of zinc deposition and suppress the formation of zinc hydroxide sulfate for enhancing the reversibility on Zn anode surface. As a competing cation, BMI+ is proved to preferably adsorb on Zn-electrode compared with H2O molecules, which shields the "tip effect" and inhibits the Zn-deposition agglomerations to inducing the horizontal growth along Zn (002) crystallographic texture. Simultaneously, the protonated BMIHSO4 additives could remove the detrimental OH- in real-time to fundamentally eliminate the accumulation of 6Zn(OH)2·ZnSO4·4H2O and Zn4SO4(OH)6·H2O on Zn anode surface. Consequently, Zn anode exhibits an ultra-long cycling stability of one year (8762 h) at 0.2 mA cm-2/0.2 mAh cm-2, 3600 h at 2 mA cm-2/2 mAh cm-2 with a high plating cumulative capacity of 3.6 Ah cm-2, and a high average Coulombic efficiency of 99.6 % throughout 1000 cycles. This work of regulating Zn deposition texture combined with eliminating notorious by-products could offer a desirable way for stabilizing the Zn-anode/electrolyte interface in AZIBs.

5.
Cancer Discov ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552003

RESUMO

Resistance to poly (ADP-ribose) polymerase inhibitors (PARPi) limits the therapeutic efficacy of PARP inhibition in treating breast cancer susceptibility gene 1 (BRCA1)-deficient cancers. Here we reveal that BRCA1 has a dual role in regulating ferroptosis. BRCA1 promotes the transcription of voltage-dependent anion channel 3 (VDAC3) and glutathione peroxidase 4 (GPX4); consequently, BRCA1 deficiency promotes cellular resistance to erastin-induced ferroptosis but sensitizes cancer cells to ferroptosis induced by GPX4 inhibitors (GPX4i). In addition, nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy and defective GPX4 induction unleash potent ferroptosis in BRCA1-deficient cancer cells upon PARPi and GPX4i co-treatment. Finally, we show that xenograft tumors derived from BRCA1-mutant breast cancer patients with PARPi resistance exhibit decreased GPX4 expression and high sensitivity to PARP and GPX4 co-inhibition. Our results show that BRCA1 deficiency induces a ferroptosis vulnerability to PARP and GPX4 co-inhibition and inform a therapeutic strategy for overcoming PARPi resistance in BRCA1-deficient cancers.

6.
Microbiol Spectr ; 12(4): e0390823, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38466093

RESUMO

Despite having high analytical sensitivities and specificities, qualitative SARS-CoV-2 nucleic acid amplification tests (NAATs) cannot distinguish infectious from non-infectious virus in clinical samples. In this study, we determined the highest cycle threshold (Ct) value of the SARS-CoV-2 targets in the Xpert Xpress SARS-CoV-2/Flu/RSV (Xpert 4plex) test that corresponded to the presence of detectable infectious SARS-CoV-2 in anterior nasal swab samples. A total of 111 individuals with nasopharyngeal swab specimens that were initially tested by the Xpert Xpress SARS-CoV-2 test were enrolled. A healthcare worker subsequently collected anterior nasal swabs from all SARS-CoV-2-positive individuals, and those specimens were tested by the Xpert 4plex test, viral culture, and laboratory-developed assays for SARS-CoV-2 replication intermediates. SARS-CoV-2 Ct values from the Xpert 4plex test were correlated with data from culture and replication intermediate testing to determine the Xpert 4plex assay Ct value that corresponded to the presence of infectious virus. Ninety-eight of the 111 (88.3%) individuals initially tested positive by the Xpert Xpress SARS-CoV-2 test. An anterior nasal swab specimen collected from positive individuals a median of 2 days later (range, 0-9 days) tested positive for SARS-CoV-2 by the Xpert 4plex test in 39.8% (39/98) of cases. Of these samples, 13 (33.3%) were considered to contain infectious virus based on the presence of cultivable virus and replication intermediates, and the highest Ct value observed for the Xpert 4plex test in these instances was 26.3. Specimens that yielded Ct values of ≤26.3 when tested by the Xpert 4plex test had a likelihood of containing infectious SARS-CoV-2; however, no infectious virus was detected in specimens with higher Ct values.IMPORTANCEUnderstanding the correlation between real-time PCR test results and the presence of infectious SARS-CoV-2 may be useful for informing patient management and workforce return-to-work or -duty. Further studies in different patient populations are needed to correlate Ct values or other biomarkers of viral replication along with the presence of infectious virus in clinical samples.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Nasofaringe , Técnicas de Diagnóstico Molecular/métodos , Teste para COVID-19
7.
Bone Res ; 12(1): 6, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38267422

RESUMO

Skeletal stem/progenitor cell (SSPC) senescence is a major cause of decreased bone regenerative potential with aging, but the causes of SSPC senescence remain unclear. In this study, we revealed that macrophages in calluses secrete prosenescent factors, including grancalcin (GCA), during aging, which triggers SSPC senescence and impairs fracture healing. Local injection of human rGCA in young mice induced SSPC senescence and delayed fracture repair. Genetic deletion of Gca in monocytes/macrophages was sufficient to rejuvenate fracture repair in aged mice and alleviate SSPC senescence. Mechanistically, GCA binds to the plexin-B2 receptor and activates Arg2-mediated mitochondrial dysfunction, resulting in cellular senescence. Depletion of Plxnb2 in SSPCs impaired fracture healing. Administration of GCA-neutralizing antibody enhanced fracture healing in aged mice. Thus, our study revealed that senescent macrophages within calluses secrete GCA to trigger SSPC secondary senescence, and GCA neutralization represents a promising therapy for nonunion or delayed union in elderly individuals.


Assuntos
Calosidades , Fraturas Ósseas , Idoso , Humanos , Animais , Camundongos , Consolidação da Fratura , Senescência Celular , Envelhecimento , Macrófagos , Células-Tronco
8.
Pediatr Dev Pathol ; 27(3): 218-227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38221675

RESUMO

BACKGROUND: Granulomas in pediatric liver biopsies (GPLB) are rare with the largest pediatric cohort reported over 25 years ago. METHODS: Single-center retrospective study of GPLB. RESULTS: Seventeen liver biopsies from 16 patients with granulomas were identified (9 boys, 56%) with a median age of 13 years (range: 1-18) for which the most common indication was the presence of a nodule/mass (47%). Significant comorbidities were seen in 13 patients (81%) and included: liver transplant (25%), history of a neoplasm (25%), autoimmune hepatitis (6%), Crohn disease (6%), bipolar disorder (6%), severe combined immunodeficiency (6%), and sickle cell disease (6%). Eleven patients were taking multiple medications at the time of biopsy. Granulomas were more commonly pan-acinar (11 cases) followed by subcapsular (4 cases), portal (1 case), and periportal (1 case). Necrosis was seen in 10 cases (59%). GMS stain was positive in 2 cases for Histoplasma-like yeast; microbiological cultures were negative in all cases (no: 4). A 18S and 16S rRNA gene sequencing performed in 15 cases revealed only 1 with a pathogenic microorganism, Mycobacterium angelicum. CONCLUSION: In our experience, GPLB are heterogenous with only 3 cases having an identifiable infectious etiology and many of the remaining cases being associated to multiple medications, suggesting drug-induced liver injury as possible etiology.


Assuntos
Granuloma , Hepatopatias , Humanos , Masculino , Criança , Feminino , Adolescente , Estudos Retrospectivos , Pré-Escolar , Lactente , Biópsia , Granuloma/patologia , Granuloma/diagnóstico , Hepatopatias/patologia , Hepatopatias/diagnóstico , Fígado/patologia
9.
Nat Commun ; 15(1): 79, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167301

RESUMO

How cells coordinate cell cycling with cell survival and death remains incompletely understood. Here, we show that cell cycle arrest has a potent suppressive effect on ferroptosis, a form of regulated cell death induced by overwhelming lipid peroxidation at cellular membranes. Mechanistically, cell cycle arrest induces diacylglycerol acyltransferase (DGAT)-dependent lipid droplet formation to sequester excessive polyunsaturated fatty acids (PUFAs) that accumulate in arrested cells in triacylglycerols (TAGs), resulting in ferroptosis suppression. Consequently, DGAT inhibition orchestrates a reshuffling of PUFAs from TAGs to phospholipids and re-sensitizes arrested cells to ferroptosis. We show that some slow-cycling antimitotic drug-resistant cancer cells, such as 5-fluorouracil-resistant cells, have accumulation of lipid droplets and that combined treatment with ferroptosis inducers and DGAT inhibitors effectively suppresses the growth of 5-fluorouracil-resistant tumors by inducing ferroptosis. Together, these results reveal a role for cell cycle arrest in driving ferroptosis resistance and suggest a ferroptosis-inducing therapeutic strategy to target slow-cycling therapy-resistant cancers.


Assuntos
Ferroptose , Neoplasias , Humanos , Gotículas Lipídicas/metabolismo , Ácidos Graxos Insaturados/metabolismo , Peroxidação de Lipídeos , Triglicerídeos/metabolismo , Pontos de Checagem do Ciclo Celular , Neoplasias/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico
10.
Nat Commun ; 14(1): 3673, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37339981

RESUMO

The cystine transporter solute carrier family 7 member 11 (SLC7A11; also called xCT) protects cancer cells from oxidative stress and is overexpressed in many cancers. Here we report a surprising finding that, whereas moderate overexpression of SLC7A11 is beneficial for cancer cells treated with H2O2, a common oxidative stress inducer, its high overexpression dramatically increases H2O2-induced cell death. Mechanistically, high cystine uptake in cancer cells with high overexpression of SLC7A11 in combination with H2O2 treatment results in toxic buildup of intracellular cystine and other disulfide molecules, NADPH depletion, redox system collapse, and rapid cell death (likely disulfidptosis). We further show that high overexpression of SLC7A11 promotes tumor growth but suppresses tumor metastasis, likely because metastasizing cancer cells with high expression of SLC7A11 are particularly susceptible to oxidative stress. Our findings reveal that SLC7A11 expression level dictates cancer cells' sensitivity to oxidative stress and suggests a context-dependent role for SLC7A11 in tumor biology.


Assuntos
Cistina , Neoplasias , Cistina/metabolismo , Linhagem Celular Tumoral , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Dissulfetos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Neoplasias/genética
12.
Chem Commun (Camb) ; 59(42): 6403-6406, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37158016

RESUMO

Implementing the dual-ligand strategy, a microporous Zn-based MOF 1 with nitro and amino groups was effectively produced. The activated interconnected pores of 1 exhibited high C2H2 uptake capacity and preferential adsorption behaviour for C2H2 over CO2, as identified by the experiments and simulations. This work provides a new approach for designing and synthesizing the MOFs with desired structures and properties by optimizing their pore environment via the dual-ligand strategy.

13.
J Clin Virol ; 164: 105468, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37119583

RESUMO

BACKGROUND: Tests that sensitively detect the presence of actively replicating SARS-CoV-2 may improve patient care by allowing the safe and timely discontinuation of isolation. Correlates of active replication include nucleocapsid antigen and virus minus-strand RNA. METHODS: Qualitative agreement of the DiaSorin LIAISON SARS-CoV-2 nucleocapsid antigen chemiluminescent immunoassay (CLIA) with minus-strand RNA was determined using 402 upper respiratory specimens from 323 patients previously tested using a laboratory-developed SARS-CoV-2 strand-specific RT-qPCR. Nucleocapsid antigen levels, minus-strand and plus-strand cycle threshold values, as well as virus culture, were used to evaluate discordant specimens. Receiver operating characteristic curves were also used to identify virus RNA thresholds for active replication, including values harmonized to the World Health Organization International Standard. RESULTS: Overall agreement was 92.0% [95% confidence interval (CI): 89.0 - 94.5], positive percent agreement was 90.6% (95% CI: 84.4 - 95.0), and negative percent agreement was 92.8% (95% CI: 89.0 - 95.6). The kappa coefficient was 0.83 (95% CI: 0.77 - 0.88). Discordant specimens contained low levels of nucleocapsid antigen and minus-strand RNA. 84.8% (28/33) were negative by culture. Sensitivity-optimized plus-strand RNA thresholds for active replication were 31.6 cycles or 3.64 log10 IU/mL; resulting in 100.0% sensitivity (95% CI: 97.6 to 100.0) and 55.9 specificity (95% CI: 49.7 to 62.0). CONCLUSIONS: Detection of nucleocapsid antigen by CLIA performs equivalently to minus-strand detection via strand-specific RT-qPCR, though these methods may overestimate replication-competent virus compared to culture. Careful implementation of biomarkers for actively replicating SARS-CoV-2 has the potential to inform infection control decision-making and patient management.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Nucleocapsídeo , Reação em Cadeia da Polimerase , RNA Viral/genética , Sensibilidade e Especificidade , Teste para COVID-19
14.
Psychol Res Behav Manag ; 16: 1165-1180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077763

RESUMO

Objective: Given the immense stress faced by medical staff during the COVID-19 pandemic, this study aimed to evaluate the relationship between mindful attention awareness, fatigue, and perceived symptoms among frontline nurses who performed nucleic acid sample collection during the COVID-19 pandemic, to reduce their fatigue and help them cope with perceived uncomfortable symptoms. Methods: A convenience sampling method was used to survey nurses who travelled to Hainan for nucleic acid sampling in August 2022 using an online (WeChat) questionnaire. A total of 514 frontline nurses who performed nucleic acid tests completed the questionnaire. The questionnaire covered basic demographic information, Mindful Attention Awareness Scale (MAAS) ratings, and Fatigue Severity Scale (FSS) ratings. Spearman correlation analysis was used to separate the relationship between MASS and FSS, and univariate and multivariate factor analyses were used to explore the relevant influences contributing to the occurrence of fatigue. Results: A total of 514 individuals completed the survey,93.97% (n=483) were female, mean age was 31.15 ± 5.7, MASS score was 69.01 ± 13.53, and 296 (57.59%) nurses experienced symptoms of fatigue during the auxiliary period. Spearman correlation analysis showed that FSS was associated with MASS. Multifactorial analysis showed that sex, age, marital status, fertility status, years of work, adaptation to dietary habits, hidrorrhea, and MAAS scores affected the presence of fatigue symptoms among the medical staff in Hainan (P<0.05). Conclusion: The psychological status of frontline nurses undergoing nucleic acid testing during the pandemic was poor, and the appearance of fatigue symptoms could be effectively reduced by increasing levels of positive thinking among medical staff to help them cope with public health emergencies.

15.
Nat Cell Biol ; 25(3): 404-414, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36747082

RESUMO

SLC7A11-mediated cystine uptake suppresses ferroptosis yet promotes cell death under glucose starvation; the nature of the latter cell death remains unknown. Here we show that aberrant accumulation of intracellular disulfides in SLC7A11high cells under glucose starvation induces a previously uncharacterized form of cell death distinct from apoptosis and ferroptosis. We term this cell death disulfidptosis. Chemical proteomics and cell biological analyses showed that glucose starvation in SLC7A11high cells induces aberrant disulfide bonds in actin cytoskeleton proteins and F-actin collapse in a SLC7A11-dependent manner. CRISPR screens and functional studies revealed that inactivation of the WAVE regulatory complex (which promotes actin polymerization and lamellipodia formation) suppresses disulfidptosis, whereas constitutive activation of Rac promotes disulfidptosis. We further show that glucose transporter inhibitors induce disulfidptosis in SLC7A11high cancer cells and suppress SLC7A11high tumour growth. Our results reveal that the susceptibility of the actin cytoskeleton to disulfide stress mediates disulfidptosis and suggest a therapeutic strategy to target disulfidptosis in cancer treatment.


Assuntos
Dissulfetos , Neoplasias , Humanos , Neoplasias/metabolismo , Apoptose , Citoesqueleto de Actina/metabolismo , Glucose/metabolismo
16.
Clin Transl Oncol ; 25(7): 2127-2137, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36723786

RESUMO

BACKGROUND AND PURPOSE: Arsenic trioxide (ATO) exerts anticancer effects on lung cancer. However, the clinical use of ATO is limited due to its systemic toxicity and resistance of lung cancer cells. The present study aimed to investigate the effects of ATO, alone and in combination with 125I seed implantation on tumor growth and proliferation in lung cancer xenograft mice, and investigate the possible molecular mechanisms. METHODS: The transmission electron microscope observed the tumor ultrastructure of lung cancer xenograft mice. The proliferation index of Ki-67 and the number and morphology of tumor microvessels were detected with immunohistochemical staining. The protein and mRNA expression were examined by western blot and real-time PCR assay. RESULTS: The in vivo results demonstrated that ATO combined with 125I seed significantly inhibited tumor growth and proliferation, as well as promoted apoptosis, and decreased the Ki-67 index and microvessel density in lung cancer xenograft mice. Moreover, ATO combined with 125I seed decreased the protein and mRNA expression levels of HIF-1α, VEGF, and BCL-2, and increased those of BAX and P53. CONCLUSIONS: ATO combined with 125I seed significantly inhibited tumor growth and proliferation in lung cancer, which may be accomplished by inhibiting tumor angiogenesis and inducing apoptosis.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Trióxido de Arsênio/uso terapêutico , Xenoenxertos , Antígeno Ki-67 , Ensaios Antitumorais Modelo de Xenoenxerto , Apoptose , Neoplasias Pulmonares/patologia , RNA Mensageiro , Linhagem Celular Tumoral , Proliferação de Células , Antineoplásicos/uso terapêutico
17.
Front Immunol ; 14: 1075848, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817452

RESUMO

Regulated cell death (RCD) contributes to reshaping the tumor immune microenvironment and participating in the progression of non-small cell lung cancer (NSCLC); however, related mechanisms have not been fully disclosed. Here, we identified 5 subclusters of NSCLC based on consensus clustering of 3429 RCD-associated genes in the TCGA database and depicted the genomic features and immune landscape of these clusters. Importantly, the clusters provided insights into recognizing tumor microenvironment (TME) and tumor responses to immunotherapy and chemotherapy. Further, we established and validated an RCD-Risk model based on RCD-associated genes, which strongly predicted the prognosis, TME, and immunotherapy outcomes in NSCLC patients. Notably, tissue microarray staining confirmed that the expression of LDLRAD3, a core gene in RCD-Risk model, correlated with poor survival. In conclusion, we developed a novel RCD classification system and RCD-Risk model of NSCLC, serving as a robust and promising predictor for prognosis and immunotherapy benefit of individual NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Morte Celular Regulada , Humanos , Prognóstico , Análise por Conglomerados , Microambiente Tumoral
18.
Artigo em Inglês | MEDLINE | ID: mdl-36691597

RESUMO

Background: Diet acts on the human body through digestion in the stomach and absorption in the intestines. Thus, the emptying of the stomach should be the focus of the research mechanism of the combined medicine and food treatment of diabetes. The emptying function of the stomach and the secretion of related hormones may be the key points of traditional Chinese medicine. In the clinic, Yunvjian is a famous traditional Chinese formula for preventing and curing diabetes. However, the pharmacological action and mechanism of Yunvjian are also need to be probe. Objective: To assess the effect of Yunvjian on glucose, insulin level and gastric emptying function and related hormones on high-fat diet combined with STZ-induced diabetic rats. Methods: High-fat diet combined with STZ was used to construct type 2 diabetes mellitus (T2DM) rats model and received a 4-week Yunvjian administration. The animals were divided into 6 groups, respectively, as the Control group, the DM group, the DM + Acarbose group, the DM + YNH group, and the DM + YNL group. Radionuclide single-photon emission computed tomography (SPECT) technology was used to observe the gastric emptying rate and half-empty time; blood was took to test fasting insulin, and then the insulin resistance index (HOMA-IR) was calculated; HE staining was performed to detect islets and gastric antrum, immunohistochemical staining was performed to detect the number and morphology of pancreatic ß cells and gastric antrum Cajal cells, and the average optical density was calculated; the expression of ghrelin hormone in gastric antrum and serum was detected by ELISA and immunofluorescence; the expression of GHRS mRNA in gastric antrum was detected by RT-PCR method. Results: Yunvjian could significantly improve the glucose level and insulin function of rats. Compared with the DM group, Yunvjian was beneficial to low fasting blood glucose (FBG) (P < 0.01), increased glucose tolerance, and improved islet function at the same time (P < 0.05). At the same time, compared with the DM group (25.02 ± 0.05, 44 ± 12.33), the emptying rate of the DM + YNH group was significantly faster (64.98 ± 0.12), and the half row time was shortened (26 ± 8.29, P < 0.05). The gastric ghrelin levels in each group of Yunvjian increased with different degrees compared with the DM group (616.2 ± 26.23), especially in the DM + YNH group (863.51 ± 23.76, P < 0.01). Correspondingly, the expression of gastric GHSR mRNA in the DM + YNH and DM + YNL groups increased significantly compared with the DM group (P < 0.01). Conclusions: Yunvjian can effectively control glucose and improve islet function, which may be closely related to its influence on gastric emptying function and related hormone secretion regulation.

19.
Microbiol Spectr ; 11(1): e0447022, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36651781

RESUMO

The demand for testing during the coronavirus disease 2019 (COVID-19) pandemic has resulted in the production of several different commercial platforms and laboratory-developed assays for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This has created several challenges, including, but not limited to, the standardization of diagnostic testing, utilization of cycle threshold (CT) values for quantitation and clinical interpretation, and data harmonization. Using reference standards consisting of a linear range of SARS-CoV-2 concentrations quantitated by viral culture-based methods and droplet digital PCR, we investigated the commutability and standardization of SARS-CoV-2 quantitation across different laboratories in the United States. We assessed SARS-CoV-2 CT values generated on multiple reverse transcription-PCR (RT-PCR) platforms and analyzed PCR efficiencies, linearity, gene targets, and CT value agreement. Our results demonstrate the inappropriateness of using SARS-CoV-2 CT values without established standards for viral quantitation. Further, we emphasize the importance of using reference standards and controls validated to independent assays, to compare results across different testing platforms and move toward better harmonization of COVID-19 quantitative test results. IMPORTANCE From the onset of the COVID-19 pandemic, the demand for SARS-CoV-2 testing has resulted in an explosion of analytical tests with very different approaches and designs. The variability in testing modalities, compounded by the lack of available commercial reference materials for standardization early in the pandemic, has led to several challenges regarding data harmonization for viral quantitation. In this study, we assessed multiple commercially available RT-PCR platforms across different laboratories within the United States using standardized reference materials characterized by viral culture methods and droplet digital PCR. We observed variability in the results generated by different instruments and laboratories, further emphasizing the importance of utilizing validated reference standards for quantitation, to better harmonize SARS-CoV-2 test results.


Assuntos
COVID-19 , Humanos , Estados Unidos , COVID-19/diagnóstico , SARS-CoV-2/genética , Teste para COVID-19 , Pandemias , Técnicas de Laboratório Clínico/métodos , Padrões de Referência
20.
Front Immunol ; 14: 1281732, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38193073

RESUMO

Bats carry many zoonotic pathogens without showing pronounced pathology, with a few exceptions. The underlying immune tolerance mechanisms in bats remain poorly understood, although information-rich omics tools hold promise for identifying a wide range of immune markers and their relationship with infection. To evaluate the generality of immune responses to infection, we assessed the differences and similarities in serum proteomes of wild vampire bats (Desmodus rotundus) across infection status with five taxonomically distinct pathogens: bacteria (Bartonella spp., hemoplasmas), protozoa (Trypanosoma cruzi), and DNA (herpesviruses) and RNA (alphacoronaviruses) viruses. From 19 bats sampled in 2019 in Belize, we evaluated the up- and downregulated immune responses of infected versus uninfected individuals for each pathogen. Using a high-quality genome annotation for vampire bats, we identified 586 serum proteins but found no evidence for differential abundance nor differences in composition between infected and uninfected bats. However, using receiver operating characteristic curves, we identified four to 48 candidate biomarkers of infection depending on the pathogen, including seven overlapping biomarkers (DSG2, PCBP1, MGAM, APOA4, DPEP1, GOT1, and IGFALS). Enrichment analysis of these proteins revealed that our viral pathogens, but not the bacteria or protozoa studied, were associated with upregulation of extracellular and cytoplasmatic secretory vesicles (indicative of viral replication) and downregulation of complement activation and coagulation cascades. Additionally, herpesvirus infection elicited a downregulation of leukocyte-mediated immunity and defense response but an upregulation of an inflammatory and humoral immune response. In contrast to our two viral infections, we found downregulation of lipid and cholesterol homeostasis and metabolism with Bartonella spp. infection, of platelet-dense and secretory granules with hemoplasma infection, and of blood coagulation pathways with T. cruzi infection. Despite the small sample size, our results suggest that vampire bats have a similar suite of immune mechanisms for viruses distinct from responses to the other pathogen taxa, and we identify potential biomarkers that can expand our understanding of pathogenesis of these infections in bats. By applying a proteomic approach to a multi-pathogen system in wild animals, our study provides a distinct framework that could be expanded across bat species to increase our understanding of how bats tolerate pathogens.


Assuntos
Doença de Chagas , Quirópteros , Humanos , Animais , Proteômica , Fenótipo , Regulação para Baixo , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...