Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892386

RESUMO

The mechanical forces exerted by cells on their surrounding microenvironment are known as cellular traction forces. These forces play crucial roles in various biological processes, such as tissue development, wound healing and cell functions. However, it is hard for traditional techniques to measure cellular traction forces accurately because their magnitude (from pN to nN) and the length scales over which they occur (from nm to µm) are extremely small. In order to fully understand mechanotransduction, highly sensitive tools for measuring cellular forces are needed. Current powerful techniques for measuring traction forces include traction force microscopy (TFM) and fluorescent molecular force sensors (FMFS). In this review, we elucidate the force imaging principles of TFM and FMFS. Then we highlight the application of FMFS in a variety of biological processes and offer our perspectives and insights into the potential applications of FMFS.


Assuntos
Mecanotransdução Celular , Humanos , Animais , Microscopia de Força Atômica/métodos , Técnicas Biossensoriais/métodos
2.
Nat Commun ; 15(1): 4895, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851753

RESUMO

Hydrogels capable of swift mechanical energy dissipation hold promise for a range of applications including impact protection, shock absorption, and enhanced damage resistance. Traditional energy absorption in such materials typically relies on viscoelastic mechanisms, involving sacrificial bond breakage, yet often suffers from prolonged recovery times. Here, we introduce a hydrogel designed for friction-based damping. This hydrogel features an internal structure that facilitates the motion of a chain walker within its network, effectively dissipating mechanical stress. The hydrogel network architecture allows for rapid restoration of its damping capacity, often within seconds, ensuring swift material recovery post-deformation. We further demonstrate that this hydrogel can significantly shield encapsulated cells from mechanical trauma under repetitive compression, owing to its proficient energy damping and rapid rebound characteristics. Therefore, this hydrogel has potential for dynamic load applications like artificial muscles and synthetic cartilage, expanding the use of hydrogel dampers in biomechanics and related areas.

3.
Cancer Manag Res ; 16: 603-616, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855327

RESUMO

Purpose: The aims of the study were to monitor circulating lymphocyte subset counts before and after therapy for nasopharyngeal carcinoma (NPC), and investigate their relationships with patient outcomes. Patients and Methods: Subjects comprised patients with TNM stage I-IVA NPC who underwent radiotherapy. Peripheral venous blood samples were collected before and after treatment. Lymphocyte subset counts were analyzed by flow cytometry. Differences between post-treatment and baseline counts were calculated to determine Δ values. Patients were divided into high and low groups, based on median lymphocyte subset counts; propensity score matching was applied to balance groups. Progression-free survival (PFS) and overall survival (OS) were plotted using Kaplan-Meier curves and compared using a Log rank test. Relationships between lymphocyte subset counts and patient survival were subjected to Cox regression analysis. Results: Patients with NPC (n=746) were enrolled from 2012-2022. Higher CD8+ and total T cell baseline counts were associated with better 5-year PFS (73.7% vs 63.1%, P=0.002 and 73.8% vs 64.1%, P=0.005, respectively). Similarly, higher Δ values of CD4+ and total T cells were associated with higher 5-year PFS (76.2% vs 63.5%, P=0.001; 74.3% vs 65.4%, P=0.010) and OS (89.8% vs 81.6%, P=0.005; 88.6% vs 82.5%, P=0.009). Multivariate Cox regression revealed that CD8+ (hazard ratio (HR) 0.651, P=0.002) and total T (HR 0.600, P<0.001) cells were significantly associated with PFS. CD4+ (HR 0.708, P=0.038) and total T (HR 0.639, P=0.031) cells were independent prognostic factors for OS. Conclusion: NPC patients with low total or CD8+ T cell counts before treatment had worse prognosis; however, those with more significant decreases in total or CD4+ T cells possibly had better outcomes. T cell counts can be reliable indicators to predict prognosis.

4.
Front Psychol ; 15: 1290310, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38298521

RESUMO

Background: Sleep problems in preschoolers are becoming increasingly prominent, and the association between sleep status and anxiety symptoms has attracted growing attention. However, studies investigating the relationship between bedtime and nighttime sleep duration in preschoolers and their anxiety symptoms remain scant. We used the large sample data from the Longhua Cohort Study of Children in Shenzhen, China (LCCS) to analyze the association between bedtime and sleep in preschoolers and their anxiety symptoms. Methods: A cross-sectional study of 69,138 preschoolers in Longhua District, Shenzhen, China was conducted in 2022. Data on sociodemographic characteristics of families, bedtime, nighttime sleep duration of preschoolers, and their anxiety symptoms (measured by the Spence Preschool Children Anxiety Scale) were collected through a structured questionnaire completed by the parents. Using binary logistic regression models, the relationship between bedtime, nighttime sleep duration, and childhood anxiety symptoms was examined. Results: The bedtimes of preschoolers were concentrated between 21:01-22:00 (52.41%). Among the preschoolers, 38.70% had bedtimes later than 22:00, and 75.49% had insufficient nighttime sleep duration. The positive screening rate for anxiety symptoms among preschoolers was 3.50%. After adjusting for confounding factors using binary logistic regression models, compared with preschoolers with bedtime ≤21:00, The OR (95%CI) values of anxiety in preschoolers with bedtime ≥23:01, 22:01-23:00 and 21:01-22:00 were 2.86 (2.21-3.69), 1.51 (1.27-1.79) and 1.48 (1.26-1.76), respectively. Compared with those with sufficient nighttime sleep duration, the OR (95%CI) of children with nighttime sleep duration less than 9 h was 1.36 (1.23-1.51). Conclusion: An association exists between bedtime and nighttime sleep duration in preschoolers and their anxiety symptoms. Preschoolers with 21:00 for bedtime and a nighttime sleep duration of 10 h may have lower anxiety symptoms. These findings support the importance of adequate sleep for preventing anxiety symptoms in children.

5.
Chem Commun (Camb) ; 60(22): 3059-3062, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38384238

RESUMO

A chemical-physical investigation proved that the loss of active Li represents the main mechanism of capacity-fading in spent LiFePO4. Given this, functional Li2CuO2-coated separators were fabricated from spent Cu foil and found to contribute to the regeneration of spent LiFePO4 in a full-cell system. This study presents a novel method for cathode/Cu foil recovery.

6.
Sci Adv ; 10(4): eadi5300, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38266085

RESUMO

The constant interplay and information exchange between cells and the microenvironment are essential to their survival and ability to execute biological functions. To date, a few leading technologies such as traction force microscopy, optical/magnetic tweezers, and molecular tension-based fluorescence microscopy are broadly used in measuring cellular forces. However, the considerable limitations, regarding the sensitivity and ambiguities in data interpretation, are hindering our thorough understanding of mechanobiology. Here, we propose an innovative approach, namely, quantum-enhanced diamond molecular tension microscopy (QDMTM), to precisely quantify the integrin-based cell adhesive forces. Specifically, we construct a force-sensing platform by conjugating the magnetic nanotags labeled, force-responsive polymer to the surface of a diamond membrane containing nitrogen-vacancy centers. Notably, the cellular forces will be converted into detectable magnetic variations in QDMTM. After careful validation, we achieved the quantitative cellular force mapping by correlating measurement with the established theoretical model. We anticipate our method can be routinely used in studies like cell-cell or cell-material interactions and mechanotransduction.


Assuntos
Comunicação Celular , Mecanotransdução Celular , Microscopia de Força Atômica , Microscopia de Fluorescência , Diamante
8.
Biomed Pharmacother ; 168: 115716, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866000

RESUMO

In recent years, research on the mechanism of bone destruction in rheumatoid arthritis (RA) has remained in the initial stages, and the mechanism has not been fully elucidated to date. Recent studies have shown that long noncoding RNAs (lncRNAs) participate in RA bone destruction via autophagy, but the specific regulatory mechanism of lncRNA-mediated autophagy is unclear. Therefore, in this article, we review the mechanisms of lncRNA-mediated autophagy in fibroblast-like synoviocytes and chondrocytes in RA bone destruction. We explain that lncRNAs mediate autophagy and participate in many specific pathological processes of RA bone destruction by regulating signalling pathways and the expression of target genes. Specific lncRNAs can be used as markers for molecular diagnosis, mechanistic regulation, treatment and prognosis of RA.


Assuntos
Artrite Reumatoide , RNA Longo não Codificante , Sinoviócitos , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Artrite Reumatoide/metabolismo , Sinoviócitos/metabolismo , Transdução de Sinais , Fibroblastos/metabolismo , Autofagia/genética , Proliferação de Células/genética , Células Cultivadas
9.
ACS Nano ; 17(17): 16870-16878, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37646337

RESUMO

Due to the dynamic nature of ester linkages, ester-bond-containing materials are well known for their outstanding degradability and stimuli responsiveness. However, whether ester hydrolysis is affected by mechanical forces remains unclear. Here, we develop a single-molecule assay to quantitatively study the force-dependent ester hydrolysis using an engineered circular permutant protein with a caged ester bond as a model. Our single-molecule force spectroscopy results show that the ester hydrolysis rate is surprisingly insensitive to forces, with a ∼7 s-1 dissociation rate that remains almost unchanged in the force range of 80 to 200 pN. Quantum calculations reveal that the ester hydrolysis involves an intermediate state formed by either H3O+- or OH--bonded tetrahedral intermediates. The measured ester-hydrolysis kinetics at the single-molecule level may primarily correspond to the rupture of these intermediate states. However, the rate-limiting step appears to be the formation of the tetrahedral intermediates, which cannot be quantitatively characterized in our experiments. Nonetheless, based on the quantum calculations, this step is also insensitive to applied forces. Altogether, our study suggests that the ester bond is chemically labile yet mechanically stable, serving as the basis for the design of responsive materials using ester bonds as mechanically inert units.

10.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445957

RESUMO

Hydrogels are soft materials constructed of physically or chemically crosslinked polymeric net-works with abundant water. The crosslinkers, as the mechanophores that bear and respond to mechanical forces, play a critical role in determining the mechanical properties of hydrogels. Here, we use a polyprotein as the crosslinker and mechanophore to form covalent polymer hydrogels in which the toughness and fatigue fracture are controlled by the mechanical unfolding of polyproteins. The protein Parvimonas sp. (ParV) is super stable and remains folded even at forces > 2 nN; however, it can unfold under loading forces of ~100 pN at basic pH values or low calcium concentrations due to destabilization of the protein structures. Through tuning the protein unfolding by pH and calcium concentrations, the hydrogel exhibits differences in modulus, strength, and anti-fatigue fracture. We found that due to the partially unfolding of ParV, the Young's modulus decreased at pH 9.0 or in the presence of EDTA (Ethylene Diamine Tetraacetic Acid), moreover, because partially unfolded ParV can be further completely unfolded due to the mechanically rupture of ester bond, leading to the observed hysteresis of the stretching and relaxation traces of the hydrogels, which is in line with single-molecule force spectroscopy experiments. These results display a new avenue for designing pH- or calcium-responsive hydrogels based on proteins and demonstrate the relationship between the mechanical properties of single molecules and macroscopic hydrogel networks.


Assuntos
Cálcio , Hidrogéis , Hidrogéis/química , Fenômenos Mecânicos , Proteínas , Poliproteínas , Polímeros
11.
Front Public Health ; 11: 1020828, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333541

RESUMO

Objective: Health insurance programs are effective in preventing financial hardship in patients with cancer. However, not much is known about how health insurance policies, especially in Southwest China with a high incidence of nasopharyngeal carcinoma (NPC), influence patients' prognosis. Here, we investigated the association of NPC-specific mortality with health insurance types and self-paying rate, and the joint effect of insurance types and self-paying rate. Materials and methods: This prospective cohort study was conducted at a regional medical center for cancer in Southwest China and included 1,635 patients with pathologically confirmed NPC from 2017 to 2019. All patients were followed up until May 31, 2022. We determine the cumulative hazard ratio of all-cause and NPC-specific mortality in the groups of various insurance kinds and the self-paying rate using Cox proportional hazard. Results: During a median follow-up period of 3.7 years, 249 deaths were recorded, of which 195 deaths were due to NPC. Higher self-paying rate were associated with a 46.6% reduced risk of NPC-specific mortality compared to patients with insufficient self-paying rate (HR: 0.534, 95% CI: 0.339-0.839, p = 0.007). For patients covered by Urban and Rural Residents Basic Medical Insurance (URRMBI), and for patients covered by Urban Employee Basic Medical Insurance, each 10% increase in the self-paying rate reduced the probability of NPC-specific death by 28.3 and 25%, respectively (UEBMI). Conclusion: Results of this study showed that, despite China's medical security administration improved health insurance coverage, NPC patients need to afford the high out-of-pocket medical costs in order to prolong their survival time.


Assuntos
Seguro Saúde , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/epidemiologia , Estudos Prospectivos , China/epidemiologia , Neoplasias Nasofaríngeas/epidemiologia
12.
Zhongguo Zhong Yao Za Zhi ; 48(10): 2739-2748, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37282934

RESUMO

Ulcerative colitis(UC) is a recurrent, intractable inflammatory bowel disease. Coptidis Rhizoma and Bovis Calculus, serving as heat-clearing and toxin-removing drugs, have long been used in the treatment of UC. Berberine(BBR) and ursodeoxycholic acid(UDCA), the main active components of Coptidis Rhizoma and Bovis Calculus, respectively, were employed to obtain UDCA-BBR supramolecular nanoparticles by stimulated co-decocting process for enhancing the therapeutic effect on UC. As revealed by the characterization of supramolecular nanoparticles by field emission scanning electron microscopy(FE-SEM) and dynamic light scattering(DLS), the supramolecular nanoparticles were tetrahedral nanoparticles with an average particle size of 180 nm. The molecular structure was described by ultraviolet spectroscopy, fluorescence spectroscopy, infrared spectroscopy, high-resolution mass spectrometry, and hydrogen-nuclear magnetic resonance(H-NMR) spectroscopy. The results showed that the formation of the supramolecular nano-particle was attributed to the mutual electrostatic attraction and hydrophobic interaction between BBR and UDCA. Additionally, supramolecular nanoparticles were also characterized by sustained release and pH sensitivity. The acute UC model was induced by dextran sulfate sodium(DSS) in mice. It was found that supramolecular nanoparticles could effectively improve body mass reduction and colon shortening in mice with UC(P<0.001) and decrease disease activity index(DAI)(P<0.01). There were statistically significant differences between the supramolecular nanoparticles group and the mechanical mixture group(P<0.001, P<0.05). Enzyme-linked immunosorbent assay(ELISA) was used to detect the serum levels of tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6), and the results showed that supramolecular nanoparticles could reduce serum TNF-α and IL-6 levels(P<0.001) and exhibited an obvious difference with the mechanical mixture group(P<0.01, P<0.05). Flow cytometry indicated that supramolecular nanoparticles could reduce the recruitment of neutrophils in the lamina propria of the colon(P<0.05), which was significantly different from the mechanical mixture group(P<0.05). These findings suggested that as compared with the mechanical mixture, the supramolecular nanoparticles could effectively improve the symptoms of acute UC in mice. The study provides a new research idea for the poor absorption of small molecules and the unsatisfactory therapeutic effect of traditional Chinese medicine and lays a foundation for the research on the nano-drug delivery system of traditional Chinese medicine.


Assuntos
Berberina , Colite Ulcerativa , Colite , Medicamentos de Ervas Chinesas , Nanopartículas , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Ácido Ursodesoxicólico/efeitos adversos , Berberina/farmacologia , Interleucina-6 , Fator de Necrose Tumoral alfa/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Colo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Colite/induzido quimicamente
13.
Phytomedicine ; 117: 154912, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37295023

RESUMO

BACKGROUND: Therapeutic approaches based on glycolysis and energy metabolism of tumor cells are new promising strategies for the treatment of cancer. Currently, researches on the inhibition of pyruvate kinase M2, a key rate limiting enzyme in glycolysis, have been corroborated as an effective cancer therapy. Alkannin is a potent pyruvate kinase M2 inhibitor. However, its non-selective cytotoxicity has affected its subsequent clinical application. Thus, it needs to be structurally modified to develop novel derivatives with high selectivity. PURPOSE: Our study aimed to ameliorate the toxicity of alkannin through structural modification and elucidate the mechanism of the superior derivative 23 in lung cancer therapy. METHODS: On the basis of the principle of collocation, different amino acids and oxygen-containing heterocycles were introduced into the hydroxyl group of the alkannin side chain. We examined the cell viability of all derivatives on three tumor cells (HepG2, A549 and HCT116) and two normal cells (L02 and MDCK) by MTT assay. Besides, the effect of derivative 23 on the morphology of A549 cells as observed by Giemsa and DAPI staining, respectively. Flow cytometry was performed to assess the effects of derivative 23 on apoptosis and cell cycle arrest. To further assess the effect of derivative 23 on the Pyruvate kinase M2 in glycolysis, an enzyme activity assay and western blot assay were performed. Finally, in vivo the antitumor activity and safety of the derivative 23 were evaluated by using Lewis mouse lung cancer xenograft model. RESULTS: Twenty-three novel alkannin derivatives were designed and synthesized to improve the cytotoxicity selectivity. Among these derivatives, derivative 23 showed the highest cytotoxicity selectivity between cancer and normal cells. The anti-proliferative activity of derivative 23 on A549 cells (IC50 = 1.67 ± 0.34 µM) was 10-fold higher than L02 cells (IC50 = 16.77 ± 1.44 µM) and 5-fold higher than MDCK cells (IC50 = 9.23 ± 0.29 µM) respectively. Subsequently, fluorescent staining and flow cytometric analysis showed that derivative 23 was able to induce apoptosis of A549 cells and arrest the cell cycle in the G0/G1 phase. In addition, the mechanistic studies suggested derivative 23 was an inhibitor of pyruvate kinase; it could regulate glycolysis by inhibiting the activation of the phosphorylation of PKM2/STAT3 signaling pathway. Furthermore, studies in vivo demonstrated derivative 23 significantly inhibited the growth of xenograft tumor. CONCLUSION: In this study, alkannin selectivity is reported to be significantly improved following structural modification, and derivative 23 is first shown to be able to inhibit lung cancer growth via the PKM2/STAT3 phosphorylation signaling pathway in vitro, indicating the potential value of derivative 23 in treating lung cancer.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Naftoquinonas , Humanos , Camundongos , Animais , Piruvato Quinase/metabolismo , Linhagem Celular Tumoral , Naftoquinonas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Apoptose , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/química
14.
Front Pharmacol ; 14: 1135264, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214436

RESUMO

Introduction: Chuanxiong, a traditional Chinese medicine, has been proved to treat a variety of cardiovascular and cerebrovascular diseases by promoting angiogenesis. However, the mechanisms of Chuanxiong's pro-angiogenesis is currently unknown. This study aimed to uncover the effect and mechanisms of Chuanxiong promoting angiogenesis in vivo and in vitro. Methods: First, potential targets were predicted by network pharmacology analysis, and PPI network was established and the pathways were enriched. Then, the chorioallantoic membrane test on quails was applied to assess the proangiogenic effects in vivo. As well, to evaluate the effects in vitro, real-time PCR, western blot analysis, the scratch test, and the tube formation experiment were used. Subsequently, the major metabolic pathways were analyzed using non-targeted metabolomics. Results: As a result of network pharmacological analysis, 51 collective targets of Chuanxiong and angiogenesis were identified, which are mainly associated with PI3K/AKT/Ras/MAPK pathway. And the biological verification results showed that Chuanxiong could increase the vessel numbers and vessel area in qCAM models. Meanwhile, Chuanxiong contributed to HUVEC proliferation, tube formation, migration, by encouraging scratch healing rates and boosting tube branch points. In addition, the levels of VEGFR2, MAPK and PI3K were elevated compared to the control group. The western blot analysis also confirmed Chuanxiong could promote an increase in AKT, FOXO1 and Ras. Furtheremore, metabolomic results showed that the proangiogenic effect of Chuanxiong is associated with glycine, serine and threonine metabolism. Discussion: In conclusion, this study clarified that Chuanxiong could promote angiogenesis in vivo and in vitro via regulating PI3K/AKT/Ras/MAPK pathway.

15.
Appl Biochem Biotechnol ; 195(12): 7429-7445, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37000354

RESUMO

Medulloblastoma (MB) is a malignant tumor of the cerebellum that occurs in children and infants. Abnormal neuronal differentiation can lead to brain tumors, and topoisomerase IIß (Top IIß) plays an important role in neuronal differentiation. The aim of this study was to investigate the molecular mechanism of 13-cis retinoic acid (13-cis RA) promoting the expression of Top IIß and inducing neuronal differentiation in human MB Daoy cells. The results showed that 13-cis RA inhibited the cell proliferation and induced cell cycle arrest in G0/G1 phase. The cells differentiated into a neuronal phenotype, with high expression of the neuronal marker microtubule-associated protein 2 (MAP2) and abundant Top IIß, and obvious neurite growth. Chromatin immunoprecipitation (ChIP) assay showed that histone H3 lysine 27 tri-methylation (H3K27me3) modification in Top IIß promoter decreased after 13-cis RA-induced cell differentiation, while jumonji domain-containing protein 3 (JMJD3) binding in Top IIß promoter increased. These results suggest that H3K27me3 and JMJD3 can regulate the expression of Top IIß gene, which is related to inducing neural differentiation. Our results provide new insights into understanding the regulatory mechanisms of Top IIß during neuronal differentiation and imply the potential application of 13-cis RA in the clinical treatment of MB.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Criança , Humanos , Histonas/genética , Histonas/metabolismo , Isotretinoína/metabolismo , Meduloblastoma/genética , Meduloblastoma/patologia , Epigênese Genética , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Diferenciação Celular , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Tretinoína/farmacologia , Tretinoína/metabolismo
16.
Phys Rev Lett ; 130(11): 118101, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-37001074

RESUMO

Cation-π interactions underlie many important processes in biology and materials science. However, experimental investigations of cation-π interactions in aqueous media remain challenging. Here, we studied the cation-π binding strength and mechanism by pulling two hydrophobic polymers with distinct cation binding properties, i.e., poly-pentafluorostyrene and polystyrene, in aqueous media using single-molecule force spectroscopy and nuclear magnetic resonance measurement. We found that the interaction strengths linearly depend on the cation concentrations, following the order of Li^{+}

17.
Zhongguo Zhong Yao Za Zhi ; 48(2): 382-389, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-36725228

RESUMO

We prepared 15 batches of Kaixin Powder benchmark samples with the decoction pieces of different batches. Further, we established the specific chromatograms and index component content determination method of Kaixin Powder benchmark samples and analyzed the peaks and similarity of the chromatograms. With sibiricose A5, sibiricose A6, polygalaxanthone Ⅲ, 3,6'-disinapoyl sucrose, ginsenoside Rb_1, ß-asarone, α-asarone, and dehydropachymic acid as index components, the index component content determination method was established and 70%-130% of the mean content of each component was set as the range. The chromatograms of 15 batches of Kaixin Powder benchmark samples had a total of 22 characteristic peaks, among which 8 peaks were identified, which represented sibiricose A5, sibiricose A6, polygalaxanthone Ⅲ, 3,6'-disinapoyl sucrose, ginsenoside Rb_1, ß-asarone, α-asarone, and dehydropachymic acid, respectively. The chromatograms shared the similarity of 0.992-0.999. The 15 batches of benchmark samples had sibiricose A5 of 0.34-0.55 mg·g~(-1), sibiricose A6 of 0.43-0.57 mg·g~(-1), polygalaxanthone Ⅲ of 0.12-0.19 mg·g~(-1), 3,6'-disinapoyl sucrose of 1.08-1.78 mg·g~(-1), ginsenoside Rb_1 of 0.33-0.62 mg·g~(-1), ß-asarone of 2.34-3.72 mg·g~(-1), α-asarone of 0.11-0.22 mg·g~(-1), and dehydropachymic acid of 0.053-0.079 mg·g~(-1). This study established the specific chromatograms and index component content determination method of Kaixin Powder benchmark samples, and the method was simple, feasible, reproducible, and stable. This study provides a scientific basis for further research on the key chemical properties of the benchmark samples and preparations of Kaixin Powder.


Assuntos
Medicamentos de Ervas Chinesas , Ginsenosídeos , Pós , Benchmarking , Medicamentos de Ervas Chinesas/química , Sacarose , Cromatografia Líquida de Alta Pressão/métodos
18.
Bioorg Chem ; 131: 106337, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36603244

RESUMO

With the soaring number of multidrug-resistant bacteria, it is imperative to develop novel efficient antibacterial agents and discovery new antibacterial pathways. Herein, we designed and synthesized a series of structurally novel glycyrrhetinic acid (GA) derivatives against multidrug-resistant Staphylococcus aureus (MRSA). The in vitro antibacterial activity of these compounds was evaluated using the microbroth dilution method, agar plate coating experiments and real-time growth curves, respectively. Most of the target derivatives showed moderate antibacterial activity against Staphylococcus aureus (S. aureus) and MRSA (MIC = 3.125-25 µM), but inactivity against Escherichia coli (E. Coli) and Pseudomonas aeruginosa (P. aeruginosa) (MIC > 200 µM). Among them, compound 11 had the strongest antibacterial activity against MRSA, with an MIC value of 3.125 µM, which was 32 times and 64 times than the first-line antibiotics penicillin and norfloxacin, respectively. Additionally, transcriptomic (RNA-seq) and quantitative polymerase chain reaction (qPCR) analysis revealed that the antibacterial mechanism of compound 11 was through blocking the arginine biosynthesis and metabolic and the H2S biogenesis. Importantly, compound 11 was confirmed to have good biocompatibility through the in vitro hemolysis tests, cytotoxicity assays and the in vivo quail chicken chorioallantoic membrane (qCAM) experiments. Current study provided new potential antibacterial candidates from glycyrrhetinic acid derivatives for clinical treatment of MRSA infections.


Assuntos
Antibacterianos , Arginina , Desenho de Fármacos , Ácido Glicirretínico , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Arginina/biossíntese , Escherichia coli/efeitos dos fármacos , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Sulfeto de Hidrogênio/metabolismo
19.
Zhongguo Zhong Yao Za Zhi ; 47(22): 6066-6075, 2022 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-36471931

RESUMO

The present study aimed to explore the material basis of Rhei Radix et Rhizoma-Coptidis Rhizoma combination in alleviating "bitter-cold" properties based on the supramolecular chemistry of Chinese medicine.Dynamic light scattering and scanning/transmission electron microscopy were used to characterize the morphological characteristics of supramolecules in the decoction of Rhei Radix et Rhizoma and Coptidis Rhizoma.The chemical composition of supramolecules, as well as the dissolution and release processes of supramolecules and the medicinal components of Coptidis Rhizoma decoction, was determined by the high-performance liquid chromatography-mass spectrometry.The differences in "bitter-cold" medicinal properties between Rhei Radix et Rhizoma decoction, Coptidis Rhizoma decoction, and co-decoction were analyzed by sensory evaluation, electronic tongue, mouse diarrhea model, and pathological indicators.The anthraquinones/tannins and alkaloids interacted to form supramolecules with a scale of about 400 nm when Rhei Radix et Rhizoma and Coptidis Rhizoma were decocted together, which delayed the dissolution and release of the active components represented by berberine. Compared with the consequence of single drug administration at 4 g·kg~(-1), the combination of the two drugs at 8 g·kg~(-1) significantly alleviated the "bitter-cold" properties.The effective components interacted to form supramolecules in the co-decoction of Rhei Radix et Rhizoma and Coptidis Rhizoma, which affected the dissolution and release of the effective components of Chinese medicinal decoction, thereby alleviating the "bitter-cold" properties.The findings of this study provide a new idea for revealing the scientific compatibility of Rhei Radix et Rhizoma and Coptidis Rhizoma.


Assuntos
Antineoplásicos , Medicamentos de Ervas Chinesas , Camundongos , Animais , Medicamentos de Ervas Chinesas/química , Medicina Tradicional Chinesa , Rizoma/química , Antraquinonas/análise , Cromatografia Líquida de Alta Pressão/métodos
20.
Diabetes Metab Syndr Obes ; 15: 2763-2770, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105430

RESUMO

Purpose: Although strong evidence suggests that ghrelin plays an important role in regulating energy balance, the effects of acylated ghrelin (AG) and deacylated ghrelin (DAG) on fat mass are largely undefined. This study aimed to investigate the differential associations of both forms of ghrelin with insulin resistance and body fat mass in patients with type 2 diabetes mellitus (T2DM). Patients and Methods: A total of 162 patients with type 2 diabetes were recruited and classified based on BMI and visceral fat area (VFA) as VFA normal group (n = 78), normal-BMI VFA obesity group (n = 20) and high-BMI VFA obesity group (n = 64). VFA and subcutaneous fat area (SFA) were detected by bioelectrical impedance analysis. Blood samples were collected to measure fasting glucose, insulin, lipids, AG and DAG levels after clinical examination. Results: Compared with VFA normal group, DAG levels were significantly lower (421.7 ± 106.0 and 388.7 ± 96.5 pg/mL vs 524.4 ± 141.5 pg/mL, P < 0.01) in the two VFA obesity groups. No significant difference was found in AG levels within three groups. Among all subjects, BMI, VFA, SFA, fasting insulin and HOMA-IR were negatively correlated with DAG but positively with AG/DAG ratio (P < 0.01). In contrast, AG was positively correlated with HOMA-IR and fasting glucose (P < 0.01). Multiple stepwise regression analysis showed that fasting glucose was the independent factor of AG, VFA and HOMA-IR were the independent factors related to DAG. Conclusion: DAG levels have a strong negative association with excess body fat mass and insulin resistance, whereas AG levels are closely related to elevated blood glucose levels in T2DM patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...