Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
BMC Microbiol ; 24(1): 292, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103761

RESUMO

Recent observational studies suggest that gut microorganisms are involved in the onset and development of coronavirus disease 2019 (COVID-19), but the potential causal relationship behind them remains unclear. Exposure data were derived from the MiBioGen consortium, encompassing 211 gut microbiota (n = 18,340). The outcome data were sourced from the COVID-19 host genetics initiative (round 7), including COVID-19 severity (n = 1,086,211), hospitalization (n = 2,095,324), and susceptibility (n = 2,597,856). First, a two-sample Mendelian randomization (TSMR) was performed to investigate the causal effect between gut microbiota and COVID-19 outcomes. Second, a two-step MR was used to explore the potential mediators and underlying mechanisms. Third, several sensitivity analyses were performed to verify the robustness of the results. Five gut microbes were found to have a potential causality with COVID-19 severity, namely Betaproteobacteria (beta = 0.096, p = 0.034), Christensenellaceae (beta = -0.092, p = 0.023), Adlercreutzia (beta = 0.072, p = 0.048), Coprococcus 1 (beta = 0.089, p = 0.032), Eisenbergiella (beta = 0.064, p = 0.024). Seven gut microbes were found to have a potential causality with COVID-19 hospitalization, namely Victivallaceae (beta = 0.037, p = 0.028), Actinomyces (beta = 0.047, p = 0.046), Coprococcus 2 (beta = -0.061, p = 0.031), Dorea (beta = 0.067, p = 0.016), Peptococcus (beta = -0.035, p = 0.049), Rikenellaceae RC9 gut group (beta = 0.034, p = 0.018), and Proteobacteria (beta = -0.069, p = 0.035). Two gut microbes were found to have a potential causality with COVID-19 susceptibility, namely Holdemanella (beta = -0.024, p = 0.023) and Lachnospiraceae FCS020 group (beta = 0.026, p = 0.027). Multi-omics mediation analyses indicate that numerous plasma proteins, metabolites, and immune factors are critical mediators linking gut microbiota with COVID-19 outcomes. Sensitivity analysis suggested no significant heterogeneity or pleiotropy. These findings revealed the causal correlation and potential mechanism between gut microbiota and COVID-19 outcomes, which may improve our understanding of the gut-lung axis in the etiology and pathology of COVID-19 in the future.


Assuntos
COVID-19 , Microbioma Gastrointestinal , SARS-CoV-2 , COVID-19/microbiologia , COVID-19/virologia , Humanos , Microbioma Gastrointestinal/genética , SARS-CoV-2/genética , Análise da Randomização Mendeliana , Hospitalização , Índice de Gravidade de Doença
2.
Comput Struct Biotechnol J ; 23: 2429-2441, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38882679

RESUMO

Background: Observational studies suggested that leukocyte telomere length (LTL) is shortened in COVID-19 patients. However, the genetic association and causality remained unknown. Methods: Based on the genome-wide association of LTL (N = 472,174) and COVID-19 phenotypes (N = 1086,211-2597,856), LDSC and SUPERGNOVA were used to estimate the genetic correlation. Cross-trait GWAS meta-analysis, colocalization, fine-mapping analysis, and transcriptome-wide association study were conducted to explore the shared genetic etiology. Mendelian randomization (MR) was utilized to infer the causality. Upstream and downstream two-step MR was performed to investigate the potential mediating effects. Results: LDSC identified a significant genetic association between LTL and all COVID-19 phenotypes (rG < 0, p < 0.05). Six significant regions were observed for LTL and COVID-19 susceptibility and hospitalization, respectively. Colocalization analysis found rs144204502, rs34517439, and rs56255908 were shared causal variants between LTL and COVID-19 phenotypes. Numerous biological pathways associated with LTL and COVID-19 outcomes were identified, mainly involved in -immune-related pathways. MR showed that longer LTL was significantly associated with a lower risk of COVID-19 severity (OR [95% CI] = 0.81 [0.71-0.92], p = 1.24 ×10-3) and suggestively associated with lower risks of COVID-19 susceptibility (OR [95% CI] = 0.96 [0.92-1.00], p = 3.44 ×10-2) and COVID-19 hospitalization (OR [95% CI] = 0.89 [0.80-0.98], p = 1.89 ×10-2). LTL partially mediated the effects of BMI, smoking, and education on COVID-19 outcomes. Furthermore, six proteins partially mediated the causality of LTL on COVID-19 outcomes, including BNDF, QPCT, FAS, MPO, SFTPB, and APOF. Conclusions: Our findings suggested that shorter LTL was genetically associated with a higher risk of COVID-19 phenotypes, with shared genetic etiology and potential causality.

3.
J Transl Med ; 22(1): 392, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685026

RESUMO

BACKGROUND: Epidemiological evidence links a close correlation between long-term exposure to air pollutants and autoimmune diseases, while the causality remained unknown. METHODS: Two-sample Mendelian randomization (TSMR) was used to investigate the role of PM10, PM2.5, NO2, and NOX (N = 423,796-456,380) in 15 autoimmune diseases (N = 14,890-314,995) using data from large European GWASs including UKB, FINNGEN, IMSGC, and IPSCSG. Multivariable Mendelian randomization (MVMR) was conducted to investigate the direct effect of each air pollutant and the mediating role of common factors, including body mass index (BMI), alcohol consumption, smoking status, and household income. Transcriptome-wide association studies (TWAS), two-step MR, and colocalization analyses were performed to explore underlying mechanisms between air pollution and autoimmune diseases. RESULTS: In TSMR, after correction of multiple testing, hypothyroidism was causally associated with higher exposure to NO2 [odds ratio (OR): 1.37, p = 9.08 × 10-4] and NOX [OR: 1.34, p = 2.86 × 10-3], ulcerative colitis (UC) was causally associated with higher exposure to NOX [OR: 2.24, p = 1.23 × 10-2] and PM2.5 [OR: 2.60, p = 5.96 × 10-3], rheumatoid arthritis was causally associated with higher exposure to NOX [OR: 1.72, p = 1.50 × 10-2], systemic lupus erythematosus was causally associated with higher exposure to NOX [OR: 4.92, p = 6.89 × 10-3], celiac disease was causally associated with lower exposure to NOX [OR: 0.14, p = 6.74 × 10-4] and PM2.5 [OR: 0.17, p = 3.18 × 10-3]. The risky effects of PM2.5 on UC remained significant in MVMR analyses after adjusting for other air pollutants. MVMR revealed several common mediators between air pollutants and autoimmune diseases. Transcriptional analysis identified specific gene transcripts and pathways interconnecting air pollutants and autoimmune diseases. Two-step MR revealed that POR, HSPA1B, and BRD2 might mediate from air pollutants to autoimmune diseases. POR pQTL (rs59882870, PPH4=1.00) strongly colocalized with autoimmune diseases. CONCLUSION: This research underscores the necessity of rigorous air pollutant surveillance within public health studies to curb the prevalence of autoimmune diseases.


Assuntos
Poluentes Atmosféricos , Doenças Autoimunes , Estudo de Associação Genômica Ampla , Humanos , Doenças Autoimunes/genética , Poluentes Atmosféricos/efeitos adversos , Análise da Randomização Mendeliana , Predisposição Genética para Doença , Material Particulado/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...