Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(12): 5819-5827, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30833390

RESUMO

Preterm birth (PTB) complications are the leading cause of long-term morbidity and mortality in children. By using whole blood samples, we integrated whole-genome sequencing (WGS), RNA sequencing (RNA-seq), and DNA methylation data for 270 PTB and 521 control families. We analyzed this combined dataset to identify genomic variants associated with PTB and secondary analyses to identify variants associated with very early PTB (VEPTB) as well as other subcategories of disease that may contribute to PTB. We identified differentially expressed genes (DEGs) and methylated genomic loci and performed expression and methylation quantitative trait loci analyses to link genomic variants to these expression and methylation changes. We performed enrichment tests to identify overlaps between new and known PTB candidate gene systems. We identified 160 significant genomic variants associated with PTB-related phenotypes. The most significant variants, DEGs, and differentially methylated loci were associated with VEPTB. Integration of all data types identified a set of 72 candidate biomarker genes for VEPTB, encompassing genes and those previously associated with PTB. Notably, PTB-associated genes RAB31 and RBPJ were identified by all three data types (WGS, RNA-seq, and methylation). Pathways associated with VEPTB include EGFR and prolactin signaling pathways, inflammation- and immunity-related pathways, chemokine signaling, IFN-γ signaling, and Notch1 signaling. Progress in identifying molecular components of a complex disease is aided by integrated analyses of multiple molecular data types and clinical data. With these data, and by stratifying PTB by subphenotype, we have identified associations between VEPTB and the underlying biology.


Assuntos
Predisposição Genética para Doença/genética , Nascimento Prematuro/genética , Metilação de DNA/genética , Feminino , Genômica/métodos , Humanos , Recém-Nascido , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Transdução de Sinais/genética , Sequenciamento Completo do Genoma/métodos
2.
Cancer Res ; 77(21): e7-e10, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29092928

RESUMO

The ISB Cancer Genomics Cloud (ISB-CGC) is one of three pilot projects funded by the National Cancer Institute to explore new approaches to computing on large cancer datasets in a cloud environment. With a focus on Data as a Service, the ISB-CGC offers multiple avenues for accessing and analyzing The Cancer Genome Atlas, TARGET, and other important references such as GENCODE and COSMIC using the Google Cloud Platform. The open approach allows researchers to choose approaches best suited to the task at hand: from analyzing terabytes of data using complex workflows to developing new analysis methods in common languages such as Python, R, and SQL; to using an interactive web application to create synthetic patient cohorts and to explore the wealth of available genomic data. Links to resources and documentation can be found at www.isb-cgc.org Cancer Res; 77(21); e7-10. ©2017 AACR.


Assuntos
Computação em Nuvem , Biologia Computacional , Genômica , Neoplasias/genética , Conjuntos de Dados como Assunto , Genoma Humano , Humanos , Internet , National Cancer Institute (U.S.) , Pesquisa/tendências , Software , Estados Unidos
3.
PLoS Comput Biol ; 13(2): e1005347, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28170390

RESUMO

Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C.


Assuntos
Algoritmos , Análise Mutacional de DNA/métodos , Regulação Neoplásica da Expressão Gênica/genética , Família Multigênica/genética , Mutação/genética , Neoplasias/genética , Transdução de Sinais/genética , Mapeamento Cromossômico , DNA de Neoplasias/genética , Genes Neoplásicos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
4.
F1000Res ; 5: 39, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27134726

RESUMO

Gene regulatory networks (GRNs) control embryonic development, and to understand this process in depth, researchers need to have a detailed understanding of both the network architecture and its dynamic evolution over time and space. Interactive visualization tools better enable researchers to conceptualize, understand, and share GRN models. BioTapestry is an established application designed to fill this role, and recent enhancements released in Versions 6 and 7 have targeted two major facets of the program. First, we introduced significant improvements for network drawing and automatic layout that have now made it much easier for the user to create larger, more organized network drawings. Second, we revised the program architecture so it could continue to support the current Java desktop Editor program, while introducing a new BioTapestry GRN Viewer that runs as a JavaScript web application in a browser. We have deployed a number of GRN models using this new web application. These improvements will ensure that BioTapestry remains viable as a research tool in the face of the continuing evolution of web technologies, and as our understanding of GRN models grows.

6.
PLoS One ; 5(5): e10662, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20498836

RESUMO

Molecular interaction networks establish all cell biological processes. The networks are under intensive research that is facilitated by new high-throughput measurement techniques for the detection, quantification, and characterization of molecules and their physical interactions. For the common model organism yeast Saccharomyces cerevisiae, public databases store a significant part of the accumulated information and, on the way to better understanding of the cellular processes, there is a need to integrate this information into a consistent reconstruction of the molecular interaction network. This work presents and validates RefRec, the most comprehensive molecular interaction network reconstruction currently available for yeast. The reconstruction integrates protein synthesis pathways, a metabolic network, and a protein-protein interaction network from major biological databases. The core of the reconstruction is based on a reference object approach in which genes, transcripts, and proteins are identified using their primary sequences. This enables their unambiguous identification and non-redundant integration. The obtained total number of different molecular species and their connecting interactions is approximately 67,000. In order to demonstrate the capacity of RefRec for functional predictions, it was used for simulating the gene knockout damage propagation in the molecular interaction network in approximately 590,000 experimentally validated mutant strains. Based on the simulation results, a statistical classifier was subsequently able to correctly predict the viability of most of the strains. The results also showed that the usage of different types of molecular species in the reconstruction is important for accurate phenotype prediction. In general, the findings demonstrate the benefits of global reconstructions of molecular interaction networks. With all the molecular species and their physical interactions explicitly modeled, our reconstruction is able to serve as a valuable resource in additional analyses involving objects from multiple molecular -omes. For that purpose, RefRec is freely available in the Systems Biology Markup Language format.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes/genética , Modelos Genéticos , Saccharomyces cerevisiae/genética , Software , Técnicas de Inativação de Genes , Genes Essenciais/genética , Mutação/genética , Fenótipo , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/crescimento & desenvolvimento
7.
Conf Proc IEEE Eng Med Biol Soc ; 2006: 2013-6, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17945691

RESUMO

Several stochastic simulation tools have been developed recently for cell signaling. A comparative evaluation of the stochastic simulation tools is needed to highlight the current state of the development. In our study, we have chosen to evaluate three stochastic simulation tools: Dizzy, Systems Biology Toolbox, and Copasi, using our own MATLAB implementation as a benchmark. The Gillespie stochastic simulation algorithm is used in all tests. With all the tools, we are able to simulate stochastically the behavior of the selected test case and to produce similar results as our own MATLAB implementation. However, it is not possible to use time-dependent inputs in stochastic simulations in Systems Biology Toolbox and Copasi. The present study is one of the first evaluations of stochastic simulation tools for realistic signal transduction pathways.


Assuntos
Simulação por Computador , Modelos Biológicos , Proteína Quinase C/metabolismo , Transdução de Sinais/fisiologia , Validação de Programas de Computador , Software , Linguagens de Programação , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...