Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5210, 2024 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433282

RESUMO

Recent advances in deep learning and imaging technologies have revolutionized automated medical image analysis, especially in diagnosing Alzheimer's disease through neuroimaging. Despite the availability of various imaging modalities for the same patient, the development of multi-modal models leveraging these modalities remains underexplored. This paper addresses this gap by proposing and evaluating classification models using 2D and 3D MRI images and amyloid PET scans in uni-modal and multi-modal frameworks. Our findings demonstrate that models using volumetric data learn more effective representations than those using only 2D images. Furthermore, integrating multiple modalities enhances model performance over single-modality approaches significantly. We achieved state-of-the-art performance on the OASIS-3 cohort. Additionally, explainability analyses with Grad-CAM indicate that our model focuses on crucial AD-related regions for its predictions, underscoring its potential to aid in understanding the disease's causes.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Proteínas Amiloidogênicas , Imageamento por Ressonância Magnética , Neuroimagem , Tomografia por Emissão de Pósitrons
2.
Netw Neurosci ; 4(4): 1007-1029, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195946

RESUMO

The communicability distance between pairs of regions in human brain is used as a quantitative proxy for studying Alzheimer's disease. Using this distance, we obtain the shortest communicability path lengths between different regions of brain networks from patients with Alzheimer's disease (AD) and healthy cohorts (HC). We show that the shortest communicability path length is significantly better than the shortest topological path length in distinguishing AD patients from HC. Based on this approach, we identify 399 pairs of brain regions for which there are very significant changes in the shortest communicability path length after AD appears. We find that 42% of these regions interconnect both brain hemispheres, 28% connect regions inside the left hemisphere only, and 20% affect vermis connection with brain hemispheres. These findings clearly agree with the disconnection syndrome hypothesis of AD. Finally, we show that in 76.9% of damaged brain regions the shortest communicability path length drops in AD in relation to HC. This counterintuitive finding indicates that AD transforms the brain network into a more efficient system from the perspective of the transmission of the disease, because it drops the circulability of the disease factor around the brain regions in relation to its transmissibility to other regions.

3.
Front Aging Neurosci ; 11: 115, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178715

RESUMO

Recent works have extensively investigated the possibility to predict brain aging from T1-weighted MRI brain scans. The main purposes of these studies are the investigation of subject-specific aging mechanisms and the development of accurate models for age prediction. Deviations between predicted and chronological age are known to occur in several neurodegenerative diseases; as a consequence, reaching higher levels of age prediction accuracy is of paramount importance to develop diagnostic tools. In this work, we propose a novel complex network model for brain based on segmenting T1-weighted MRI scans in rectangular boxes, called patches, and measuring pairwise similarities using Pearson's correlation to define a subject-specific network. We fed a deep neural network with nodal metrics, evaluating both the intensity and the uniformity of connections, to predict subjects' ages. Our model reaches high accuracies which compare favorably with state-of-the-art approaches. We observe that the complex relationships involved in this brain description cannot be accurately modeled with standard machine learning approaches, such as Ridge and Lasso regression, Random Forest, and Support Vector Machines, instead a deep neural network has to be used.

4.
PLoS One ; 14(12): e0226190, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31891941

RESUMO

Alzheimer's disease (AD) is the most common type of dementia and affects millions of people worldwide. Since complex diseases are often the result of combinations of gene interactions, microarray data and gene co-expression analysis can provide tools for addressing complexity. Our study aimed to find groups of interacting genes that are relevant in the development of AD. In this perspective, we implemented a method proposed in a previous work to detect gene communities linked to AD. Our strategy combined co-expression network analysis with the study of Shannon entropy of the betweenness. We analyzed the publicly available GSE1297 dataset, achieved from the GEO database in NCBI, containing hippocampal gene expression of 9 control and 22 AD human subjects. Co-expressed genes were clustered into different communities. Two communities of interest (composed by 72 and 39 genes) were found by calculating the correlation coefficient between communities and clinical features. The detected communities resulted stable, replicated on two independent datasets and mostly enriched in pathways closely associated with neuro-degenative diseases. A comparison between our findings and other module detection techniques showed that the detected communities were more related to AD phenotype. Lastly, the hub genes within the two communities of interest were identified by means of a centrality analysis and a bootstrap procedure. The communities of the hub genes presented even stronger correlation with clinical features. These findings and further explorations on the detected genes could shed light on the genetic aspects related with physiological aspects of Alzheimer's disease.


Assuntos
Doença de Alzheimer/genética , Biologia Computacional/métodos , Redes Reguladoras de Genes , Hipocampo/química , Algoritmos , Estudos de Casos e Controles , Análise por Conglomerados , Entropia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos
5.
Entropy (Basel) ; 21(5)2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33267189

RESUMO

In this paper, we investigate the connectivity alterations of the subcortical brain network due to Alzheimer's disease (AD). Mostly, the literature investigated AD connectivity abnormalities at the whole brain level or at the cortex level, while very few studies focused on the sub-network composed only by the subcortical regions, especially using diffusion-weighted imaging (DWI) data. In this work, we examine a mixed cohort including 46 healthy controls (HC) and 40 AD patients from the Alzheimer's Disease Neuroimaging Initiative (ADNI) data set. We reconstruct the brain connectome through the use of state of the art tractography algorithms and we propose a method based on graph communicability to enhance the information content of subcortical brain regions in discriminating AD. We develop a classification framework, achieving 77% of area under the receiver operating characteristic (ROC) curve in the binary discrimination AD vs. HC only using a 12 × 12 subcortical features matrix. We find some interesting AD-related connectivity patterns highlighting that subcortical regions tend to increase their communicability through cortical regions to compensate the physical connectivity reduction between them due to AD. This study also suggests that AD connectivity alterations mostly regard the inter-connectivity between subcortical and cortical regions rather than the intra-subcortical connectivity.

6.
Phys Med Biol ; 62(6): 2361-2375, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28234631

RESUMO

Diffusion tensor imaging (DTI) is a promising imaging technique that provides insight into white matter microstructure integrity and it has greatly helped identifying white matter regions affected by Alzheimer's disease (AD) in its early stages. DTI can therefore be a valuable source of information when designing machine-learning strategies to discriminate between healthy control (HC) subjects, AD patients and subjects with mild cognitive impairment (MCI). Nonetheless, several studies have reported so far conflicting results, especially because of the adoption of biased feature selection strategies. In this paper we firstly analyzed DTI scans of 150 subjects from the Alzheimer's disease neuroimaging initiative (ADNI) database. We measured a significant effect of the feature selection bias on the classification performance (p-value < 0.01), leading to overoptimistic results (10% up to 30% relative increase in AUC). We observed that this effect is manifest regardless of the choice of diffusion index, specifically fractional anisotropy and mean diffusivity. Secondly, we performed a test on an independent mixed cohort consisting of 119 ADNI scans; thus, we evaluated the informative content provided by DTI measurements for AD classification. Classification performances and biological insight, concerning brain regions related to the disease, provided by cross-validation analysis were both confirmed on the independent test.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/classificação , Anisotropia , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Substância Branca/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...