Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5557, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956415

RESUMO

Severe traumatic bleeding may lead to extremely high mortality rates, and early intervention to stop bleeding plays as a critical role in saving lives. However, rapid hemostasis in deep non-compressible trauma using a highly water-absorbent hydrogel, combined with strong tissue adhesion and bionic procoagulant mechanism, remains a challenge. In this study, a DNA hydrogel (DNAgel) network composed of natural nucleic acids with rapid water absorption, high swelling and instant tissue adhesion is reported, like a band-aid to physically stop bleeding. The excellent swelling behavior and robust mechanical performance, meanwhile, enable the DNAgel band-aid to fill the defect cavity and exert pressure on the bleeding vessels, thereby achieving compression hemostasis for deep tissue bleeding sites. The neutrophil extracellular traps (NETs)-inspired DNAgel network also acts as an artificial DNA scaffold for erythrocytes to adhere and aggregate, and activates platelets, promoting coagulation cascade in a bionic way. The DNAgel achieves lower blood loss than commercial gelatin sponge (GS) in male rat trauma models. In vivo evaluation in a full-thickness skin incision model also demonstrates the ability of DNAgel for promoting wound healing. Overall, the DNAgel band-aid with great hemostatic capacity is a promising candidate for rapid hemostasis and wound healing.


Assuntos
DNA , Armadilhas Extracelulares , Hemostasia , Hemostáticos , Hidrogéis , Cicatrização , Animais , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , DNA/química , Masculino , Hidrogéis/química , Hidrogéis/farmacologia , Ratos , Hemostasia/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Hemostáticos/farmacologia , Hemostáticos/química , Ratos Sprague-Dawley , Hemorragia , Humanos , Neutrófilos/metabolismo , Modelos Animais de Doenças
2.
Nanoscale Horiz ; 9(7): 1190-1199, 2024 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-38757185

RESUMO

Antibacterial nanoagents have been increasingly developed due to their favorable biocompatibility, cost-effective raw materials, and alternative chemical or optical properties. Nevertheless, there is still a pressing need for antibacterial nanoagents that exhibit outstanding bacteria-binding capabilities and high antibacterial efficiency. In this study, we constructed a multifunctional cascade bioreactor (GCDCO) as a novel antibacterial agent. This involved incorporating carbon dots (CDs), cobalt sulfide quantum dots (CoSx QDs), and glucose oxidase (GOx) to enhance bacterial inhibition under sunlight irradiation. The GCDCO demonstrated highly efficient antibacterial capabilities attributed to its favorable photothermal properties, photodynamic activity, as well as the synergistic effects of hyperthermia, glucose-augmented chemodynamic action, and additional photodynamic activity. Within this cascade bioreactor, CDs played the role of a photosensitizer for photodynamic therapy (PDT), capable of generating ˙O2- even under solar light irradiation. The CoSx QDs not only functioned as a catalytic component to decompose hydrogen peroxide (H2O2) and generate hydroxyl radicals (˙OH), but they also served as heat generators to enhance the Fenton-like catalysis process. Furthermore, GOx was incorporated into this cascade bioreactor to internally supply H2O2 by consuming glucose for a Fenton-like reaction. As a result, GCDCO could generate a substantial amount of reactive oxygen species (ROS), leading to a significant synergistic effect that greatly induced bacterial death. Furthermore, the in vitro antibacterial experiment revealed that GCDCO displayed notably enhanced antibacterial activity against E. coli (99+ %) when combined with glucose under simulated sunlight, surpassing the efficacy of the individual components. This underscores its remarkable efficiency in combating bacterial growth. Taken together, our GCDCO demonstrates significant potential for use in the routine treatment of skin infections among diabetic patients.


Assuntos
Antibacterianos , Glucose Oxidase , Fotoquimioterapia , Pontos Quânticos , Pontos Quânticos/química , Pontos Quânticos/efeitos da radiação , Glucose Oxidase/química , Fotoquimioterapia/métodos , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Cobalto/química , Cobalto/farmacologia , Luz , Carbono/química , Carbono/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , Reatores Biológicos , Espécies Reativas de Oxigênio/metabolismo
3.
Nat Commun ; 15(1): 3343, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637580

RESUMO

Pathogenic gut microbiota is responsible for a few debilitating gastrointestinal diseases. While the host immune cells do produce extracellular vesicles to counteract some deleterious effects of the microbiota, the extracellular vesicles are of insufficient doses and at unreliable exposure times. Here we use mechanical stimulation of hydrogel-embedded macrophage in a bioelectronic controller that on demand boost production of up to 20 times of therapeutic extracellular vesicles to ameliorate the microbes' deleterious effects in vivo. Our miniaturized wireless bioelectronic system termed inducible mechanical activation for in-situ and sustainable generating extracellular vesicles (iMASSAGE), leverages on wireless electronics and responsive hydrogel to impose mechanical forces on macrophages to produce extracellular vesicles that rectify gut microbiome dysbiosis and ameliorate colitis. This in vivo controllable extracellular vesicles-produced system holds promise as platform to treat various other diseases.


Assuntos
Colite , Vesículas Extracelulares , Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/fisiologia , Hidrogéis/farmacologia , Disbiose
4.
Sci Technol Adv Mater ; 25(1): 2315013, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476511

RESUMO

The ever-growing use of nature-derived materials creates exciting opportunities for novel development in various therapeutic biomedical applications. Living cells, serving as the foundation of nanoarchitectonics, exhibit remarkable capabilities that enable the development of bioinspired and biomimetic systems, which will be explored in this review. To understand the foundation of this development, we first revisited the anatomy of cells to explore the characteristics of the building blocks of life that is relevant. Interestingly, animal cells have amazing capabilities due to the inherent functionalities in each specialized cell type. Notably, the versatility of cell membranes allows red blood cells and neutrophils' membranes to cloak inorganic nanoparticles that would naturally be eliminated by the immune system. This underscores how cell membranes facilitate interactions with the surroundings through recognition, targeting, signalling, exchange, and cargo attachment. The functionality of cell membrane-coated nanoparticles can be tailored and improved by strategically engineering the membrane, selecting from a variety of cell membranes with known distinct inherent properties. On the other hand, plant cells exhibit remarkable capabilities for synthesizing various nanoparticles. They play a role in the synthesis of metal, carbon-based, and polymer nanoparticles, used for applications such as antimicrobials or antioxidants. One of the versatile components in plant cells is found in the photosynthetic system, particularly the thylakoid, and the pigment chlorophyll. While there are challenges in consistently synthesizing these remarkable nanoparticles derived from nature, this exploration begins to unveil the endless possibilities in nanoarchitectonics research.


We have highlighted the Cell-derived Nanomaterials for Biomedical Applications through the lenses of our team who have experiences with working on cell membrane, thylakoids, and studying the impact of nanoparticles on biological phenomenon such as nanomaterialsinduced endothelial leakiness (NanoEL). In this review, we have discussed the progress and the wide potential of nanoarchitectonics in plant systems, animal cells and microorganisms. Due to our unique backgrounds, our take on this topic may be the novelty of the review.

5.
Nat Commun ; 15(1): 613, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242873

RESUMO

Alzheimer's disease (AD) is a major cause of dementia debilitating the global ageing population. Current understanding of the AD pathophysiology implicates the aggregation of amyloid beta (Aß) as causative to neurodegeneration, with tauopathies, apolipoprotein E and neuroinflammation considered as other major culprits. Curiously, vascular endothelial barrier dysfunction is strongly associated with Aß deposition and 80-90% AD subjects also experience cerebral amyloid angiopathy. Here we show amyloid protein-induced endothelial leakiness (APEL) in human microvascular endothelial monolayers as well as in mouse cerebral vasculature. Using signaling pathway assays and discrete molecular dynamics, we revealed that the angiopathy first arose from a disruption to vascular endothelial (VE)-cadherin junctions exposed to the nanoparticulates of Aß oligomers and seeds, preceding the earlier implicated proinflammatory and pro-oxidative stressors to endothelial leakiness. These findings were analogous to nanomaterials-induced endothelial leakiness (NanoEL), a major phenomenon in nanomedicine depicting the paracellular transport of anionic inorganic nanoparticles in the vasculature. As APEL also occurred in vitro with the oligomers and seeds of alpha synuclein, this study proposes a paradigm for elucidating the vascular permeation, systemic spread, and cross-seeding of amyloid proteins that underlie the pathogeneses of AD and Parkinson's disease.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Humanos , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Agregados Proteicos , Proteínas Amiloidogênicas/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...