Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Pharmacol Ther ; 258: 108637, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38521247

RESUMO

Cytochrome P450 2 J2 (CYP2J2) is primarily expressed extrahepatically and is the predominant epoxygenase in human cardiac tissues. This highlights its key role in the metabolism of endogenous substrates. Significant scientific interest lies in cardiac CYP2J2 metabolism of arachidonic acid (AA), an omega-6 polyunsaturated fatty acid, to regioisomeric bioactive epoxyeicosatrienoic acid (EET) metabolites that show cardioprotective effects including regulation of cardiac electrophysiology. From an in vitro perspective, the accurate characterization of the kinetics of CYP2J2 metabolism of AA including its inhibition and inactivation by drugs could be useful in facilitating in vitro-in vivo extrapolations to predict drug-AA interactions in drug discovery and development. In this review, background information on the structure, regulation and expression of CYP2J2 in human heart is presented alongside AA and EETs as its endogenous substrate and metabolites. The in vitro and in vivo implications of the kinetics of this endogenous metabolic pathway as well as its perturbation via inhibition and inactivation by drugs are elaborated. Additionally, the role of CYP2J2-mediated metabolism of AA to EETs in cardiac electrophysiology will be expounded.


Assuntos
Ácido Araquidônico , Citocromo P-450 CYP2J2 , Sistema Enzimático do Citocromo P-450 , Humanos , Ácido Araquidônico/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Miocárdio/metabolismo , Coração/fisiologia , Coração/efeitos dos fármacos
2.
Eur J Pharm Sci ; 187: 106475, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37225005

RESUMO

Cardiac cytochrome P450 2J2 (CYP2J2) metabolizes endogenous polyunsaturated fatty acid, arachidonic acid (AA), to bioactive regioisomeric epoxyeicosatrienoic acid (EET) metabolites. This endogenous metabolic pathway has been postulated to play a homeostatic role in cardiac electrophysiology. However, it is unknown if drugs that cause intermediate to high risk torsades de pointes (TdP) exhibit inhibitory effects against CYP2J2 metabolism of AA to EETs. In this study, we demonstrated that 11 out of 16 drugs screened with intermediate to high risk of TdP as defined by the Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative are concurrently reversible inhibitors of CYP2J2 metabolism of AA, with unbound inhibitory constant (Ki,AA,u) values ranging widely from 0.132 to 19.9 µM. To understand the physiological relevancy of Ki,AA,u, the in vivo unbound drug concentration within human heart tissue (Cu,heart) was calculated via experimental determination of in vitro unbound partition coefficient (Kpuu) for 10 CYP2J2 inhibitors using AC16 human ventricular cardiomyocytes as well as literature-derived values of fraction unbound in plasma (fu,p) and plasma drug concentrations in clinical scenarios leading to TdP. Notably, all CYP2J2 inhibitors screened belonging to the high TdP risk category, namely vandetanib and bepridil, exhibited highest Kpuu values of 18.2 ± 1.39 and 7.48 ± 1.16 respectively although no clear relationship between Cu,heart and risk of TdP could eventually be determined. R values based on basic models of reversible inhibition as per FDA guidelines were calculated using unbound plasma drug concentrations (Cu,plasma) and adapted using Cu,heart which suggested that 4 out of 10 CYP2J2 inhibitors with intermediate to high risk of TdP demonstrate greatest potential for clinically relevant in vivo cardiac drug-AA interactions. Our results shed novel insights on the relevance of CYP2J2 inhibition in drugs with risk of TdP. Further studies ascertaining the role of CYP2J2 metabolism of AA in cardiac electrophysiology, characterizing inherent cardiac ion channel activities of drugs with risk of TdP as well as in vivo evidence of drug-AA interactions will be required prior to determining if CYP2J2 inhibition could be an alternative mechanism contributing to drug-induced TdP.


Assuntos
Citocromo P-450 CYP2J2 , Torsades de Pointes , Humanos , Torsades de Pointes/induzido quimicamente , Torsades de Pointes/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Miócitos Cardíacos , Inibidores das Enzimas do Citocromo P-450/farmacologia , Proteínas de Ligação a DNA
3.
Br J Clin Pharmacol ; 89(6): 1873-1890, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36683488

RESUMO

AIMS: Despite potential enzyme- and transporter-mediated drug-drug interactions (DDIs) between dronedarone and rivaroxaban in atrial fibrillation (AF) patients, pharmacokinetic/pharmacodynamic data remain limited to guide clinical practice. We aimed to develop, verify and validate a physiologically based pharmacokinetic (PBPK) model of dronedarone and its major metabolite, N-desbutyldronedarone (NDBD), to prospectively interrogate this clinically relevant DDI in healthy and mild renal impairment populations. METHODS: The middle-out development of our PBPK model combined literature-derived or in-house in vitro data, predicted in silico data and in vivo clinical data. Model verification was performed for intravenous and oral (single and multiple) dosing regimens. Model validation for the accurate prediction of cytochrome P450 (CYP)3A4- and P-glycoprotein-mediated DDI utilized simvastatin and digoxin as respective victim drugs. Rivaroxaban-specific inhibitory parameters of dronedarone and/or NDBD against CYP3A4, CYP2J2, OAT3 and P-glycoprotein were incorporated into the PBPK-DDI model for prospective dronedarone-rivaroxaban DDI simulation. RESULTS: Dronedarone and NDBD PK following clinically relevant doses of 400 mg dronedarone across single and multiple oral dosing were accurately simulated by incorporating effect of auto-inactivation on dose nonlinearities. Following successful model validation, nondose-adjusted rivaroxaban-dronedarone DDI in healthy and mild renal impairment populations revealed simulated rivaroxaban area under the plasma concentration-time curve up to 24 h fold change greater than dose exposure equivalence (0.70-1.43) at 1.65 and 1.84, respectively. Correspondingly, respective major bleeding risk was 4.24 and 4.70% compared with threshold of 4.5% representing contraindicated rivaroxaban-ketoconazole DDI. CONCLUSION: Our PBPK-DDI model predicted clinically significant dronedarone-rivaroxaban DDI in both healthy and mild renal impairment subjects. Greater benefit vs. risk could be achieved with rivaroxaban dose reductions to at least 15 mg in mild renal impairment subjects on concomitant dronedarone and rivaroxaban.


Assuntos
Insuficiência Renal , Rivaroxabana , Humanos , Dronedarona , Rivaroxabana/farmacocinética , Modelos Biológicos , Interações Medicamentosas , Subfamília B de Transportador de Cassetes de Ligação de ATP
4.
Acta Pharm Sin B ; 12(10): 3905-3923, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36213535

RESUMO

Cytochrome P4502J2 (CYP2J2) metabolizes arachidonic acid (AA) to cardioprotective epoxyeicosatrienoic acids (EETs). Dronedarone, an antiarrhythmic drug prescribed for treatment of atrial fibrillation (AF) induces cardiac adverse effects (AEs) with poorly understood mechanisms. We previously demonstrated that dronedarone inactivates CYP2J2 potently and irreversibly, disrupts AA-EET pathway leading to cardiac mitochondrial toxicity rescuable via EET enrichment. In this study, we investigated if mitigation of CYP2J2 inhibition prevents dronedarone-induced cardiac AEs. We first synthesized a deuterated analogue of dronedarone (termed poyendarone) and demonstrated that it neither inactivates CYP2J2, disrupts AA-EETs metabolism nor causes cardiac mitochondrial toxicity in vitro. Our patch-clamp experiments demonstrated that pharmacoelectrophysiology of dronedarone is unaffected by deuteration. Next, we show that dronedarone treatment or CYP2J2 knockdown in spontaneously beating cardiomyocytes indicative of depleted CYP2J2 activity exacerbates beat-to-beat (BTB) variability reflective of proarrhythmic phenotype. In contrast, poyendarone treatment yields significantly lower BTB variability compared to dronedarone in cardiomyocytes indicative of preserved CYP2J2 activity. Importantly, poyendarone and dronedarone display similar antiarrhythmic properties in the canine model of persistent AF, while poyendarone substantially reduces beat-to-beat variability of repolarization duration suggestive of diminished proarrhythmic risk. Our findings prove that deuteration of dronedarone prevents CYP2J2 inactivation and mitigates dronedarone-induced cardiac AEs.

5.
Adv Pharmacol ; 95: 131-176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35953154

RESUMO

Atypical kinetics are observed in metabolic reactions catalyzed by cytochrome P450 enzymes (P450). Yet, this phenomenon is regarded as experimental artifacts in some instances despite increasing evidence challenging the assumptions of typical Michaelis-Menten kinetics. As P450 play a major role in the metabolism of a wide range of substrates including drugs and endogenous compounds, it becomes critical to consider the impact of atypical kinetics on the accuracy of estimated kinetic and inhibitory parameters which could affect extrapolation of pharmacological and toxicological implications. The first half of this book chapter will focus on atypical non-Michaelis-Menten kinetics (e.g. substrate inhibition, biphasic and sigmoidal kinetics) as well as proposed underlying mechanisms supported by recent insights in mechanistic enzymology. In particular, substrate inhibition kinetics in P450 as well as concurrent drug inhibition of P450 in the presence of substrate inhibition will be further discussed. Moreover, mounting evidence has revealed that despite the high degree of sequence homology between CYP3A isoforms (i.e. CYP3A4 and CYP3A5), they have the propensities to exhibit vastly different susceptibilities and potencies of mechanism-based inactivation (MBI) with a common drug inhibitor. These experimental observations pertaining to the presence of these atypical isoform- and probe substrate-specific complexities in CYP3A isoforms by several clinically-relevant drugs will therefore be expounded and elaborated upon in the second half of this book chapter.


Assuntos
Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450 , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Cinética
6.
Eur J Pharm Sci ; 164: 105889, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34044117

RESUMO

Extrahepatic CYP2J2 metabolism of arachidonic acid (AA) to bioactive regioisomeric epoxyeicosatrienoic acids (EETs) is implicated in both physiological and pathological conditions. Here, we aimed to characterize atypical substrate inhibition kinetics of this endogenous metabolic pathway and its reversible inhibition by xenobiotic inhibitors when AA is used as the physiologically-relevant substrate vis-à-vis conventional probe substrate astemizole (AST). As compared to typical Michaelis-Menten kinetics observed for AST, complete substrate inhibition was observed for CYP2J2 metabolism of AA to 14,15-EET whereby velocity of the reaction declined significantly at concentrations of AA above 20-30 µM with an estimated substrate inhibition constant (Ks) of 31 µM. In silico sequential docking of two AA substrates to orthosteric (OBS) and adjacent secondary binding sites (SBS) within a 3-dimensional homology model of CYP2J2 revealed favorable and comparable binding poses of glide-scores -3.1 and -3.8 respectively. Molecular dynamics (MD) simulations ascertained CYP2J2 conformational stability with dual AA substrate binding as time-dependent root mean squared deviation (RMSD) of protein Cα atoms and ligand heavy atoms stabilized to a plateau in all but one trajectory (n=6). The distance between heme-iron and ω6 (C14, C15) double bond of AA in OBS also increased from 7.5 ± 1.4 Å to 8.5 ± 1.8 Å when CYP2J2 was simulated with only AA in OBS versus the presence of AA in both OBS and SBS (p<0.001), supporting the observed in vitro substrate inhibition phenomenon. Poor correlation was observed between inhibitory constants (Ki) determined for a panel of nine competitive and mixed mode xenobiotic inhibitors against CYP2J2 metabolism of AA as compared to AST, whereby 4 out of 9 drugs had a greater than 5-fold difference between Ki values. Nonlinear Eadie-Hofstee plots illustrated that complete substrate inhibition of CYP2J2 by AA was not attenuated even at high concentrations of xenobiotic inhibitors which further corroborates that CYP2J2 may accommodate three or more ligands simultaneously. In light of the atypical kinetics, our results highlight the importance of using physiologically-relevant substrates in in vitro enzymatic inhibition assays for the characterization of xenobiotic-endobiotic interactions which is applicable to other complex endogenous metabolic pathways beyond CYP2J2 metabolism of AA to EETs. The accurate determination of Ki would further facilitate the association of xenobiotic-endobiotic interactions to observed therapeutic or toxic outcomes.


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Xenobióticos , Ácido Araquidônico , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Cinética
7.
Cardiovasc Toxicol ; 20(4): 339-350, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31898152

RESUMO

Since deuterium replacement has a potential to modulate pharmacodynamics, pharmacokinetics and toxicity, we developed deuterated dronedarone; poyendarone, and assessed its cardiovascular effects. Poyendarone hydrochloride in doses of 0.3 and 3 mg/kg over 30 s was intravenously administered to the halothane-anesthetized dogs (n = 4), which provided peak plasma concentrations of 108 ± 10 and 1120 ± 285 ng/mL, respectively. The 0.3 mg/kg shortened the ventricular repolarization period. The 3 mg/kg transiently increased the heart rate at 5 min but decreased at 45 min, and elevated the total peripheral vascular resistance and left ventricular preload, whereas it reduced the mean blood pressure at 5 min, left ventricular contractility and cardiac output. The transient tachycardic action is considered to be induced by the hypotension-induced, reflex-mediated increase of sympathetic tone. The 3 mg/kg delayed both intra-atrial and intra-ventricular conductions, indicating Na+ channel inhibitory action. Moreover, the 3 mg/kg transiently shortened the ventricular repolarization period at 5 min. No significant change was detected in the late repolarization by poyendarone, indicating it might not hardly significantly alter rapidly activating delayed-rectifier K+ current (IKr). Poyendarone prolonged the atrial effective refractory period greater than the ventricular parameter. When compared with dronedarone, poyendarone showed similar pharmacokinetics of dronedarone, but reduced ß-adrenoceptor blocking activity as well as the cardio-suppressive effect. Poyendarone failed to inhibit IKr and showed higher atrial selectivity in prolonging the effective refractory period of atrium versus ventricle. Thus, the deuteration may be an effective way to improve the cardiovascular profile of dronedarone. Poyendarone is a promising anti-atrial fibrillatory drug candidate.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Antiarrítmicos/administração & dosagem , Deutério , Dronedarona/administração & dosagem , Sistema de Condução Cardíaco/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Administração Intravenosa , Animais , Antiarrítmicos/farmacocinética , Canais de Potássio de Retificação Tardia/efeitos dos fármacos , Canais de Potássio de Retificação Tardia/metabolismo , Cães , Dronedarona/análogos & derivados , Dronedarona/farmacocinética , Feminino , Sistema de Condução Cardíaco/metabolismo , Período Refratário Eletrofisiológico/efeitos dos fármacos
8.
Biochem Pharmacol ; 169: 113615, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31445022

RESUMO

The widespread applications of the century-old Michaelis-Menten kinetics in the characterization of drug-metabolizing cytochrome P450 enzymes have persisted since their discovery in the 1950s. This is a concern given preceding reports of atypical Michaelis-Menten kinetics in substrates and effectors of cytochrome P450 enzymes which disprove previous notions that these phenomena exist purely as experimental artifacts while highlighting the neglected risk of errors when adopting inaccurate hyperbolic kinetic models for both in vitro-in vivo extrapolation and prediction of drug-drug interactions. This commentary summarizes the various types of atypical Michaelis-Menten kinetics, such as biphasic kinetics, homotropic and heterotropic cooperativity, with a special focus on substrate inhibition kinetics, the postulated mechanisms and models in the presence and absence of a xenobiotic inhibitor and roles in regulation of endogenous metabolism. Potential artifactual sources of atypical kinetics are also discussed.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Cinética , Redes e Vias Metabólicas , Modelos Teóricos , Xenobióticos/farmacologia
9.
Toxicol Sci ; 163(1): 79-91, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29385569

RESUMO

Dronedarone and amiodarone are structurally similar antiarrhythmic drugs. Dronedarone worsens cardiac adverse effects with unknown causes while amiodarone has no cardiac adversity. Dronedarone induces preclinical mitochondrial toxicity in rat liver and exhibits clinical hepatotoxicity. Here, we further investigated the relative potential of the antiarrhythmic drugs in causing mitochondrial injury in cardiomyocytes. Differentiated rat H9c2 cardiomyocytes were treated with dronedarone, amiodarone, and their respective metabolites namely N-desbutyldronedarone (NDBD) and N-desethylamiodarone (NDEA). Intracellular ATP content, mitochondrial membrane potential (Δψm), and inhibition of carnitine palmitoyltransferase I (CPT1) activity and arachidonic acid (AA) metabolism were measured in H9c2 cells. Inhibition of electron transport chain (ETC) activities and uncoupling of ETC were further studied in isolated rat heart mitochondria. Dronedarone, amiodarone, NDBD and NDEA decreased intracellular ATP content significantly (IC50 = 0.49, 1.84, 1.07, and 0.63 µM, respectively) and dissipated Δψm potently (IC50 = 0.5, 2.94, 12.8, and 7.38 µM, respectively). Dronedarone, NDBD, and NDEA weakly inhibited CPT1 activity while amiodarone (IC50 > 100 µM) yielded negligible inhibition. Only dronedarone inhibited AA metabolism to its regioisomeric epoxyeicosatrienoic acids (EETs) consistently and potently. NADH-supplemented ETC activity was inhibited by dronedarone, amiodarone, NDBD and NDEA (IC50 = 3.07, 5.24, 11.94, and 16.16 µM, respectively). Cytotoxicity, ATP decrease and Δψm disruption were ameliorated via exogenous pre-treatment of H9c2 cells with 11, 12-EET and 14, 15-EET. Our study confirmed that dronedarone causes mitochondrial injury in cardiomyocytes by perturbing Δψm, inhibiting mitochondrial complex I, uncoupling ETC and dysregulating AA-EET metabolism. We postulate that cardiac mitochondrial injury is one potential contributing factor to dronedarone-induced cardiac failure exacerbation.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/farmacologia , Antiarrítmicos/toxicidade , Cardiotônicos/farmacologia , Dronedarona/toxicidade , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...