Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nature ; 631(8021): 563-569, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39020035

RESUMO

The uptake of carbon dioxide (CO2) by terrestrial ecosystems is critical for moderating climate change1. To provide a ground-based long-term assessment of the contribution of forests to terrestrial CO2 uptake, we synthesized in situ forest data from boreal, temperate and tropical biomes spanning three decades. We found that the carbon sink in global forests was steady, at 3.6 ± 0.4 Pg C yr-1 in the 1990s and 2000s, and 3.5 ± 0.4 Pg C yr-1 in the 2010s. Despite this global stability, our analysis revealed some major biome-level changes. Carbon sinks have increased in temperate (+30 ± 5%) and tropical regrowth (+29 ± 8%) forests owing to increases in forest area, but they decreased in boreal (-36 ± 6%) and tropical intact (-31 ± 7%) forests, as a result of intensified disturbances and losses in intact forest area, respectively. Mass-balance studies indicate that the global land carbon sink has increased2, implying an increase in the non-forest-land carbon sink. The global forest sink is equivalent to almost half of fossil-fuel emissions (7.8 ± 0.4 Pg C yr-1 in 1990-2019). However, two-thirds of the benefit from the sink has been negated by tropical deforestation (2.2 ± 0.5 Pg C yr-1 in 1990-2019). Although the global forest sink has endured undiminished for three decades, despite regional variations, it could be weakened by ageing forests, continuing deforestation and further intensification of disturbance regimes1. To protect the carbon sink, land management policies are needed to limit deforestation, promote forest restoration and improve timber-harvesting practices1,3.


Assuntos
Dióxido de Carbono , Sequestro de Carbono , Florestas , Árvores , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análise , Árvores/metabolismo , Árvores/crescimento & desenvolvimento , Clima Tropical , Conservação dos Recursos Naturais , Agricultura Florestal , Mudança Climática , Combustíveis Fósseis , Internacionalidade , Taiga
2.
Nat Commun ; 13(1): 28, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013178

RESUMO

Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes.


Assuntos
Mudança Climática , Desidratação , Ecologia , Florestas , Raios Infravermelhos , Clima , Secas , Ecossistema , Noruega , Picea , Pinus sylvestris , Solo , Árvores , Água
4.
PLoS One ; 13(11): e0207151, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30418996

RESUMO

BACKGROUND: European forests have a long record of management. However, the diversity of the current forest management across nations, tree species and owners, is hardly understood. Often when trying to simulate future forest resources under alternative futures, simply the yield table style of harvesting is applied. It is now crucially important to come to grips with actual forest management, now that demand for wood is increasing and the EU Land Use, Land Use Change and Forestry Regulation has been adopted requiring 'continuation of current management practices' as a baseline to set the Forest Reference Level carbon sink. METHODS: Based on a large dataset of 714,000 re-measured trees in National Forest inventories from 13 regions, we are now able to analyse actual forest harvesting. CONCLUSIONS: From this large set of repeated tree measurements we can conclude that there is no such thing as yield table harvesting in Europe. We found general trends of increasing harvest probability with higher productivity of the region and the species, but with important deviations related to local conditions like site accessibility, state of the forest resource (like age), specific subsidies, importance of other forest services, and ownership of the forest. As a result, we find a huge diversity in harvest regimes. Over the time period covered in our inventories, the average harvest probability over all regions was 2.4% yr-1 (in number of trees) and the mortality probability was 0.4% yr-1. Our study provides underlying and most actual data that can serve as a basis for quantifying 'continuation of current forest management'. It can be used as a cornerstone for the base period as required for the Forest Reference Level for EU Member States.


Assuntos
Agricultura Florestal , Propriedade , Árvores , Conservação dos Recursos Naturais , Europa (Continente) , Agricultura Florestal/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...