Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
2.
Cell Death Dis ; 15(1): 14, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182563

RESUMO

GRB2 is an adaptor protein of HER2 (and several other tyrosine kinases), which we identified as a novel BECN1 (Beclin 1) interacting partner. GRB2 co-immunoprecipitated with BECN1 in several breast cancer cell lines and regulates autophagy through a mechanism involving the modulation of the class III PI3Kinase VPS34 activity. In ovo studies in a CAM (Chicken Chorioallantoic Membrane) model indicated that GRB2 knockdown, as well as overexpression of GRB2 loss-of-function mutants (Y52A and S86A-R88A) compromised tumor growth. These differences in tumor growth correlated with differential autophagy activity, indicating that autophagy effects might be related to the effects on tumorigenesis. Our data highlight a novel function of GRB2 as a BECN1 binding protein and a regulator of autophagy.


Assuntos
Autofagia , Proteína Beclina-1 , Proteína Adaptadora GRB2 , Animais , Proteínas Adaptadoras de Transdução de Sinal , Proteína Beclina-1/metabolismo , Carcinogênese , Transformação Celular Neoplásica , Humanos , Proteína Adaptadora GRB2/metabolismo
3.
J Clin Invest ; 134(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917202

RESUMO

Virophagy, the selective autophagosomal engulfment and lysosomal degradation of viral components, is crucial for neuronal cell survival and antiviral immunity. However, the mechanisms leading to viral antigen recognition and capture by autophagic machinery remain poorly understood. Here, we identified cyclin-dependent kinase-like 5 (CDKL5), known to function in neurodevelopment, as an essential regulator of virophagy. Loss-of-function mutations in CDKL5 are associated with a severe neurodevelopmental encephalopathy. We found that deletion of CDKL5 or expression of a clinically relevant pathogenic mutant of CDKL5 reduced virophagy of Sindbis virus (SINV), a neurotropic RNA virus, and increased intracellular accumulation of SINV capsid protein aggregates and cellular cytotoxicity. Cdkl5-knockout mice displayed increased viral antigen accumulation and neuronal cell death after SINV infection and enhanced lethality after infection with several neurotropic viruses. Mechanistic studies demonstrated that CDKL5 directly binds the canonical selective autophagy receptor p62 and phosphorylates p62 at T269/S272 to promote its interaction with viral capsid aggregates. We found that CDKL5-mediated phosphorylation of p62 facilitated the formation of large p62 inclusion bodies that captured viral capsids to initiate capsid targeting to autophagic machinery. Overall, these findings identify a cell-autonomous innate immune mechanism for autophagy activation to clear intracellular toxic viral protein aggregates during infection.


Assuntos
Agregados Proteicos , Vírus , Camundongos , Animais , Autofagia/genética , Fosforilação , Camundongos Knockout , Proteínas do Capsídeo , Antígenos Virais , Proteínas Serina-Treonina Quinases/genética
4.
Nat Commun ; 14(1): 1687, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973243

RESUMO

Dysfunction of cell cycle control and defects of primary ciliogenesis are two features of many cancers. Whether these events are interconnected and the driving mechanism coordinating them remains elusive. Here, we identify an actin filament branching surveillance system that alerts cells of actin branching insufficiency and regulates cell cycle progression, cytokinesis and primary ciliogenesis. We find that Oral-Facial-Digital syndrome 1 functions as a class II Nucleation promoting factor to promote Arp2/3 complex-mediated actin branching. Perturbation of actin branching promotes OFD1 degradation and inactivation via liquid-to-gel transition. Elimination of OFD1 or disruption of OFD1-Arp2/3 interaction drives proliferating, non-transformed cells into quiescence with ciliogenesis by an RB-dependent mechanism, while it leads oncogene-transformed/cancer cells to incomplete cytokinesis and irreversible mitotic catastrophe via actomyosin ring malformation. Inhibition of OFD1 leads to suppression of multiple cancer cell growth in mouse xenograft models. Thus, targeting OFD1-mediated actin filament branching surveillance system provides a direction for cancer therapy.


Assuntos
Actinas , Citocinese , Animais , Camundongos , Humanos , Citocinese/fisiologia , Actinas/metabolismo , Actomiosina/metabolismo , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo
5.
ACS Med Chem Lett ; 13(9): 1510-1516, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36105331

RESUMO

Autophagy plays essential roles in a wide variety of physiological processes, such as cellular homeostasis, metabolism, development, differentiation, and immunity. Selective pharmacological modulation of autophagy is considered a valuable potential therapeutic approach to treat diverse human diseases. However, development of such therapies has been greatly impeded by the lack of specific small molecule autophagy modulators. Here, we performed structure-activity relationship studies on a previously discovered weak Bcl-2 inhibitor SW076956, and developed a panel of small molecule compounds that selectively released Bcl-2-mediated inhibition of autophagy-related Beclin 1 compared to apoptosis-related Bax at nanomolar concentration. Our NMR analysis showed that compound 35 directly binds Bcl-2 and specifically inhibits the interaction between the Bcl-2 and Beclin 1 BH3 domains without disruption of the Bcl-2-Bax BH3 interaction. More broadly, this proof-of-concept study demonstrates that targeting protein-protein interactions of the intrinsic autophagy regulatory network can serve as a valuable strategy for the development of autophagy-based therapeutics.

6.
Nat Commun ; 13(1): 5293, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36075933

RESUMO

P2-type ATPase sodium-potassium pumps (Na+/K+-ATPases) are ion-transporting enzymes that use ATP to transport Na+ and K+ on opposite sides of the lipid bilayer against their electrochemical gradients to maintain ion concentration gradients across the membranes in all animal cells. Despite the available molecular architecture of the Na+/K+-ATPases, a complete molecular mechanism by which the Na+ and K+ ions access into and are released from the pump remains unknown. Here we report five cryo-electron microscopy (cryo-EM) structures of the human alpha3 Na+/K+-ATPase in its cytoplasmic side-open (E1), ATP-bound cytoplasmic side-open (E1•ATP), ADP-AlF4- trapped Na+-occluded (E1•P-ADP), BeF3- trapped exoplasmic side-open (E2P) and MgF42- trapped K+-occluded (E2•Pi) states. Our work reveals the atomically resolved structural detail of the cytoplasmic gating mechanism of the Na+/K+-ATPase.


Assuntos
ATPase Trocadora de Sódio-Potássio , Sódio , Difosfato de Adenosina , Trifosfato de Adenosina , Animais , Microscopia Crioeletrônica , Humanos , Íons , Potássio/metabolismo , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
7.
Biochim Biophys Acta Mol Basis Dis ; 1868(9): 166453, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35644338

RESUMO

Fanconi anemia (FA) is the most common inherited bone marrow failure syndrome. The FA proteins have functions in genome maintenance and in the cytoplasmic process of selective autophagy, beyond their canonical roles of repairing DNA interstrand cross-links. FA core complex proteins FANCC, FANCF, FANCL, FANCA, FANCD2, BRCA1 and BRCA2, which previously had no known direct functions outside the nucleus, have recently been implicated in mitophagy. Although mutations in FANCL account for only a very small number of cases in FA families, it plays a key role in the FA pathophysiology and might drive carcinogenesis. Here, we demonstrate that FANCL protein is present in mitochondria in the control and Oligomycin and Antimycin (OA)-treated cells and its ubiquitin ligase activity is not required for its localization to mitochondria. CRISPR/Cas9-mediated knockout of FANCL in HeLa cells overexpressing parkin results in increased sensitivity to mitochondrial stress and defective clearing of damaged mitochondria upon OA treatment. This defect was reversed by the reintroduction of either wild-type FANCL or FANCL(C307A), a mutant lacking ubiquitin ligase activity. To summarize, FANCL protects from mitochondrial stress and supports Parkin-mediated mitophagy in a ubiquitin ligase-independent manner.


Assuntos
Anemia de Fanconi , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação L da Anemia de Fanconi , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Células HeLa , Humanos , Mitofagia , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética
8.
J Cell Biol ; 221(7)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35510944

RESUMO

The stimulator of interferon genes (STING) plays a critical role in innate immunity. Emerging evidence suggests that STING is important for DNA or cGAMP-induced non-canonical autophagy, which is independent of a large part of canonical autophagy machineries. Here, we report that, in the absence of STING, energy stress-induced autophagy is upregulated rather than downregulated. Depletion of STING in Drosophila fat cells enhances basal- and starvation-induced autophagic flux. During acute exercise, STING knockout mice show increased autophagy flux, exercise endurance, and altered glucose metabolism. Mechanistically, these observations could be explained by the STING-STX17 interaction. STING physically interacts with STX17, a SNARE that is essential for autophagosome biogenesis and autophagosome-lysosome fusion. Energy crisis and TBK1-mediated phosphorylation both disrupt the STING-STX17 interaction, allow different pools of STX17 to translocate to phagophores and mature autophagosomes, and promote autophagic flux. Taken together, we demonstrate a heretofore unexpected function of STING in energy stress-induced autophagy through spatial regulation of autophagic SNARE STX17.


Assuntos
Autofagia , Metabolismo Energético , Lisossomos , Proteínas de Membrana , Proteínas Qa-SNARE , Animais , Autofagossomos/metabolismo , Drosophila , Lisossomos/genética , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Condicionamento Físico Animal , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo
9.
Nat Commun ; 13(1): 1760, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365663

RESUMO

The evolutionarily conserved serine/threonine kinase mTORC1 is a central regulator of cell growth and proliferation. mTORC1 is activated on the lysosome surface. However, once mTORC1 is activated, it is unclear whether mTORC1 phosphorylates local lysosomal proteins to regulate specific aspects of lysosomal biology. Through cross-reference analyses of the lysosome proteome with the mTORC1-regulated phosphoproteome, we identify STK11IP as a lysosome-specific substrate of mTORC1. mTORC1 phosphorylates STK11IP at Ser404. Knockout of STK11IP leads to a robust increase of autophagy flux. Dephosphorylation of STK11IP at Ser404 represses the role of STK11IP as an autophagy inhibitor. Mechanistically, STK11IP binds to V-ATPase, and regulates the activity of V-ATPase. Knockout of STK11IP protects mice from fasting or Methionine/Choline-Deficient Diet (MCD)-induced fatty liver. Thus, our study demonstrates that STK11IP phosphorylation represents a mechanism for mTORC1 to regulate lysosomal acidification and autophagy, and points to STK11IP as a promising therapeutic target for the amelioration of diseases with aberrant autophagy signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Complexos Multiproteicos , Serina-Treonina Quinases TOR , Animais , Concentração de Íons de Hidrogênio , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Knockout , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo
10.
Autophagy ; 18(2): 409-422, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34101533

RESUMO

Macroautophagy/autophagy is emerging as a major pathway that regulates both aging and stem cell function. Previous studies have demonstrated a positive correlation of autophagy with longevity; however, these studies did not directly address the consequence of altered autophagy in stem cells during aging. In this study, we used Becn1F121A/F121A knockin mice (designated as Becn1 KI mice) with the F121A allele in the autophagy gene Becn1 to investigate the consequences of enhanced autophagy in postnatal neural stem cells (NSCs) during aging. We found that increased autophagy protected NSCs from exhaustion and promoted neurogenesis in old (≥18-months-old) mice compared with age-matched wild-type (WT) mice, although it did not affect NSCs in young (3-months-old) mice. After pharmacologically-induced elimination of proliferative cells in the subventricular zone (SVZ), there was enhanced re-activation of quiescent NSCs in old Becn1 KI mice as compared to those in WT mice, with more efficient exit from quiescent status to generate proliferative cells and neuroblasts. Moreover, there was also improved maintenance and increased neuronal differentiation of NSCs isolated from the SVZ of old Becn1 KI mice in in vitro assays. Lastly, the increased neurogenesis in Becn1 KI mice was associated with better olfactory function in aged animals. Together, our results suggest a protective role of increased autophagy in aging NSCs, which may help the development of novel strategies to treat age-related neurodegeneration.Abbreviations: ATG: autophagy related; Baf A1: bafilomycin A1; Becn1: beclin 1; BrdU: bromodeoxyuridine/5-bromo-2'-deoxyuridine; DCX: doublecortin; GFAP: glial fibrillary acidic protein; GFP: green fluorescent protein; H&E: hematoxylin and eosin; HSCs: hematopoietic stem cells; KI: knockin; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; mo: month; NSCs: neural stem cells; OB: olfactory bulb; RB1CC1: RB1-inducible coiled-coil 1; ROS: reactive oxygen species; SOX2: SRY (sex determining region Y)-box 2; SGZ: subgranular zone; SVZ: subventricular zone; TMZ: temozolomide; WT: wild type.


Assuntos
Autofagia , Células-Tronco Neurais , Envelhecimento , Animais , Autofagia/genética , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Camundongos , Células-Tronco Neurais/metabolismo , Neurogênese
11.
JCI Insight ; 6(5)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33539326

RESUMO

Elevation of intraocular pressure (IOP) due to trabecular meshwork (TM) damage is associated with primary open-angle glaucoma (POAG). Myocilin mutations resulting in elevated IOP are the most common genetic causes of POAG. We have previously shown that mutant myocilin accumulates in the ER and induces chronic ER stress, leading to TM damage and IOP elevation. However, it is not understood how chronic ER stress leads to TM dysfunction and loss. Here, we report that mutant myocilin activated autophagy but was functionally impaired in cultured human TM cells and in a mouse model of myocilin-associated POAG (Tg-MYOCY437H). Genetic and pharmacological inhibition of autophagy worsened mutant myocilin accumulation and exacerbated IOP elevation in Tg-MYOCY437H mice. Remarkably, impaired autophagy was associated with chronic ER stress-induced transcriptional factor CHOP. Deletion of CHOP corrected impaired autophagy, enhanced recognition and degradation of mutant myocilin by autophagy, and reduced glaucoma in Tg-MYOCY437H mice. Stimulating autophagic flux via tat-beclin 1 peptide or torin 2 promoted autophagic degradation of mutant myocilin and reduced elevated IOP in Tg-MYOCY437H mice. Our study provides an alternate treatment strategy for myocilin-associated POAG by correcting impaired autophagy in the TM.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Proteínas do Citoesqueleto/metabolismo , Proteínas do Olho/metabolismo , Glaucoma de Ângulo Aberto/metabolismo , Glicoproteínas/metabolismo , Hipertensão Ocular/metabolismo , Malha Trabecular/metabolismo , Animais , Autofagia , Células Cultivadas , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout
12.
Sci Adv ; 7(8)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33608268

RESUMO

Drug abuse is a foremost public health problem. Cocaine is a widely abused drug worldwide that produces various reward-related behaviors. The mechanisms that underlie cocaine-induced disorders are unresolved, and effective treatments are lacking. Here, we found that an autophagy-related protein Becn2 is a previously unidentified regulator of cocaine reward behaviors. Becn2 deletion protects mice from cocaine-stimulated locomotion and reward behaviors, as well as cocaine-induced dopamine accumulation and signaling, by increasing presynaptic dopamine receptor 2 (D2R) autoreceptors in dopamine neurons. Becn2 regulates D2R endolysosomal trafficking, degradation, and cocaine-induced behaviors via interacting with a D2R-bound adaptor GASP1. Inactivating Becn2 by upstream autophagy inhibitors stabilizes striatal presynaptic D2R, reduces dopamine release and signaling, and prevents cocaine reward in normal mice. Thus, the autophagy protein Becn2 is essential for cocaine psychomotor stimulation and reward through regulating dopamine neurotransmission, and targeting Becn2 by autophagy inhibitors is a potential strategy to prevent cocaine-induced behaviors.


Assuntos
Cocaína , Animais , Proteínas Relacionadas à Autofagia , Cocaína/farmacologia , Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Recompensa
13.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495338

RESUMO

Beclin 1, an autophagy and haploinsufficient tumor-suppressor protein, is frequently monoallelically deleted in breast and ovarian cancers. However, the precise mechanisms by which Beclin 1 inhibits tumor growth remain largely unknown. To address this question, we performed a genome-wide CRISPR/Cas9 screen in MCF7 breast cancer cells to identify genes whose loss of function reverse Beclin 1-dependent inhibition of cellular proliferation. Small guide RNAs targeting CDH1 and CTNNA1, tumor-suppressor genes that encode cadherin/catenin complex members E-cadherin and alpha-catenin, respectively, were highly enriched in the screen. CRISPR/Cas9-mediated knockout of CDH1 or CTNNA1 reversed Beclin 1-dependent suppression of breast cancer cell proliferation and anchorage-independent growth. Moreover, deletion of CDH1 or CTNNA1 inhibited the tumor-suppressor effects of Beclin 1 in breast cancer xenografts. Enforced Beclin 1 expression in MCF7 cells and tumor xenografts increased cell surface localization of E-cadherin and decreased expression of mesenchymal markers and beta-catenin/Wnt target genes. Furthermore, CRISPR/Cas9-mediated knockout of BECN1 and the autophagy class III phosphatidylinositol kinase complex 2 (PI3KC3-C2) gene, UVRAG, but not PI3KC3-C1-specific ATG14 or other autophagy genes ATG13, ATG5, or ATG7, resulted in decreased E-cadherin plasma membrane and increased cytoplasmic E-cadherin localization. Taken together, these data reveal previously unrecognized cooperation between Beclin 1 and E-cadherin-mediated tumor suppression in breast cancer cells.


Assuntos
Proteína Beclina-1/metabolismo , Neoplasias da Mama/metabolismo , Caderinas/metabolismo , Genes Supressores de Tumor , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Neoplasias da Mama/patologia , Sistemas CRISPR-Cas/genética , Membrana Celular/metabolismo , Proliferação de Células/genética , Feminino , Genoma Humano , Humanos , Interferons/metabolismo , Células MCF-7 , Camundongos Endogâmicos NOD , Camundongos SCID , Transporte Proteico , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , alfa Catenina/metabolismo
14.
Nature ; 589(7842): 456-461, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33328639

RESUMO

Autophagy, a process of degradation that occurs via the lysosomal pathway, has an essential role in multiple aspects of immunity, including immune system development, regulation of innate and adaptive immune and inflammatory responses, selective degradation of intracellular microorganisms, and host protection against infectious diseases1,2. Autophagy is known to be induced by stimuli such as nutrient deprivation and suppression of mTOR, but little is known about how autophagosomal biogenesis is initiated in mammalian cells in response to viral infection. Here, using genome-wide short interfering RNA screens, we find that the endosomal protein sorting nexin 5 (SNX5)3,4 is essential for virus-induced, but not for basal, stress- or endosome-induced, autophagy. We show that SNX5 deletion increases cellular susceptibility to viral infection in vitro, and that Snx5 knockout in mice enhances lethality after infection with several human viruses. Mechanistically, SNX5 interacts with beclin 1 and ATG14-containing class III phosphatidylinositol-3-kinase (PI3KC3) complex 1 (PI3KC3-C1), increases the lipid kinase activity of purified PI3KC3-C1, and is required for endosomal generation of phosphatidylinositol-3-phosphate (PtdIns(3)P) and recruitment of the PtdIns(3)P-binding protein WIPI2 to virion-containing endosomes. These findings identify a context- and organelle-specific mechanism-SNX5-dependent PI3KC3-C1 activation at endosomes-for initiation of autophagy during viral infection.


Assuntos
Autofagia/imunologia , Nexinas de Classificação/metabolismo , Vírus/imunologia , Animais , Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Linhagem Celular , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Endossomos/metabolismo , Feminino , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética , Nexinas de Classificação/deficiência , Nexinas de Classificação/genética , Proteínas de Transporte Vesicular/metabolismo
15.
Autophagy ; 17(10): 2891-2904, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33222586

RESUMO

A key mediator of macroautophagy/autophagy induction is the class III phosphatidylinositol 3-kinase complex I (PtdIns3K-C1) consisting of PIK3C3/VPS34, PIK3R4/VPS15, BECN1, and ATG14. Although several proteins are known to enhance or decrease PtdIns3K-C1 activity, our understanding of the molecular regulation of PtdIns3K-C1 is still incomplete. Previously, we identified a Golgi-associated protein, GLIPR2, in a screen for proteins that interact with amino acids 267-284 of BECN1, a region of BECN1 sufficient to induce autophagy when fused to a cell penetrating leader sequence. In this study, we used CRISPR-Cas9-mediated depletion of GLIPR2 in cells and mice to investigate the role of GLIPR2 in the regulation of autophagy and PtdIns3K-C1 activity. Depletion of GLIPR2 in HeLa cells increased autelophagic flux and generation of phosphatidylinositol 3-phosphate (PtdIns3P). GLIPR2 knockout resulted in less compact Golgi structures, which was also observed in autophagy-inducing conditions such as amino acid starvation or Tat-BECN1 peptide treatment. Importantly, the binding of GLIPR2 to purified PtdIns3K-C1 inhibited the in vitro lipid kinase activity of PtdIns3K-C1. Moreover, the tissues of glipr2 knockout mice had increased basal autophagic flux as well as increased recruitment of the PtdIns3P-binding protein, WIPI2. Taken together, our findings demonstrate that GLIPR2 is a negative regulator of PtdIns3K-C1 activity and basal autophagy.Abbreviations: ATG14: autophagy related 14; Baf A1: bafilomycin A1; BARA: ß-α repeated, autophagy-specific; CQ: chloroquine; GFP: green fluorescent protein; GLIPR2: GLI pathogenesis related 2; HBSS: Hanks' balanced salt solution; KO: knockout; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PBS: phosphate-buffered saline; PtdIns3K-C1: phosphatidylinositol 3-kinase complex I; PtdIns3P: phosphatidylinositol-3-phosphate; SEM: standard error of the mean; WIPI2: WD repeat domain, phosphoinositide interacting 2.


Assuntos
Autofagia , Classe III de Fosfatidilinositol 3-Quinases , Proteínas de Membrana , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Fosforilação
17.
J Clin Invest ; 130(10): 5349-5369, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32865519

RESUMO

Beclin 2 plays a critical role in metabolic regulation and obesity, but its functions in innate immune signaling and cancer development remain largely unknown. Here, we identified Beclin 2 as a critical negative regulator of inflammation and lymphoma development. Mice with homozygous ablation of BCL2-interacting protein 2 (Becn2) developed splenomegaly and lymphadenopathy and markedly increased ERK1/2 and NF-κB signaling for proinflammatory cytokine production. Beclin 2 targeted the key signaling kinases MEKK3 and TAK1 for degradation through an ATG9A-dependent, but ATG16L/Beclin 1/LC3-independent, autophagic pathway. Mechanistically, Beclin 2 recruited MEKK3 or TAK1 through ATG9A to form a complex (Beclin 2-ATG9A-MEKK3) on ATG9A+ vesicles upon ULK1 activation. Beclin 2 further interacted with STX5 and STX6 to promote the fusion of MEKK3- or TAK1-associated ATG9A+ vesicles to phagophores for subsequent degradation. Importantly, Becn2-deficient mice had a markedly increased incidence of lymphoma development, with persistent STAT3 activation. Myeloid-specific ablation of MEKK3 (Map3k3) completely rescued the phenotypes (splenomegaly, higher amounts of proinflammatory cytokines, and cancer incidence) of Becn2-deficient mice. Hence, our findings have identified an important role of Beclin 2 in the negative regulation of innate immune signaling and tumor development through an ATG9A-dependent, but ATG16L/Beclin 1/LC3-independent, autophagic pathway, thus providing a potential target for the treatment of inflammatory diseases and cancer.


Assuntos
Carcinogênese/genética , Carcinogênese/imunologia , Imunidade Inata/genética , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Animais , Autofagia/genética , Autofagia/imunologia , Citocinas/biossíntese , Células HEK293 , Humanos , Mediadores da Inflamação/metabolismo , Linfadenopatia/etiologia , Linfadenopatia/genética , Linfadenopatia/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Esplenomegalia/etiologia , Esplenomegalia/genética , Esplenomegalia/imunologia
18.
J Clin Invest ; 130(6): 2978-2991, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32364533

RESUMO

Although autophagy is generally protective, uncontrolled or excessive activation of autophagy can be detrimental. However, it is often difficult to distinguish death by autophagy from death with autophagy, and whether autophagy contributes to death in cardiomyocytes (CMs) is still controversial. Excessive activation of autophagy induces a morphologically and biochemically defined form of cell death termed autosis. Whether autosis is involved in tissue injury induced under pathologically relevant conditions is poorly understood. In the present study, myocardial ischemia/reperfusion (I/R) induced autosis in CMs, as evidenced by cell death with numerous vacuoles and perinuclear spaces, and depleted intracellular membranes. Autosis was observed frequently after 6 hours of reperfusion, accompanied by upregulation of Rubicon, attenuation of autophagic flux, and marked accumulation of autophagosomes. Genetic downregulation of Rubicon inhibited autosis and reduced I/R injury, whereas stimulation of autosis during the late phase of I/R with Tat-Beclin 1 exacerbated injury. Suppression of autosis by ouabain, a cardiac glycoside, in humanized Na+,K+-ATPase-knockin mice reduced I/R injury. Taken together, these results demonstrate that autosis is significantly involved in I/R injury in the heart and triggered by dysregulated accumulation of autophagosomes due to upregulation of Rubicon.


Assuntos
Autofagia , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Regulação para Cima , Animais , Autofagossomos/genética , Autofagossomos/metabolismo , Autofagossomos/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Transgênicos , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia
19.
Nature ; 578(7796): 605-609, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32051584

RESUMO

The activation of adenosine monophosphate-activated protein kinase (AMPK) in skeletal muscle coordinates systemic metabolic responses to exercise1. Autophagy-a lysosomal degradation pathway that maintains cellular homeostasis2-is upregulated during exercise, and a core autophagy protein, beclin 1, is required for AMPK activation in skeletal muscle3. Here we describe a role for the innate immune-sensing molecule Toll-like receptor 9 (TLR9)4, and its interaction with beclin 1, in exercise-induced activation of AMPK in skeletal muscle. Mice that lack TLR9 are deficient in both exercise-induced activation of AMPK and plasma membrane localization of the GLUT4 glucose transporter in skeletal muscle, but are not deficient in autophagy. TLR9 binds beclin 1, and this interaction is increased by energy stress (glucose starvation and endurance exercise) and decreased by a BCL2 mutation3,5 that blocks the disruption of BCL2-beclin 1 binding. TLR9 regulates the assembly of the endolysosomal phosphatidylinositol 3-kinase complex (PI3KC3-C2)-which contains beclin 1 and UVRAG-in skeletal muscle during exercise, and knockout of beclin 1 or UVRAG inhibits the cellular AMPK activation induced by glucose starvation. Moreover, TLR9 functions in a muscle-autonomous fashion in ex vivo contraction-induced AMPK activation, glucose uptake and beclin 1-UVRAG complex assembly. These findings reveal a heretofore undescribed role for a Toll-like receptor in skeletal-muscle AMPK activation and glucose metabolism during exercise, as well as unexpected crosstalk between this innate immune sensor and autophagy proteins.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Beclina-1/metabolismo , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Receptor Toll-Like 9/metabolismo , Animais , Autofagia , Ativação Enzimática , Exercício Físico , Glucose/metabolismo , Humanos , Masculino , Camundongos , Modelos Animais , Músculo Esquelético/enzimologia , Fosfatidilinositol 3-Quinase/metabolismo , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/genética , Proteínas Supressoras de Tumor/metabolismo
20.
JCI Insight ; 5(1)2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31941841

RESUMO

Autosis is a distinct form of cell death that requires both autophagy genes and the Na+,K+-ATPase pump. However, the relationship between the autophagy machinery and Na+,K+-ATPase is unknown. We explored the hypothesis that Na+,K+-ATPase interacts with the autophagy protein Beclin 1 during stress and autosis-inducing conditions. Starvation increased the Beclin 1/Na+,K+-ATPase interaction in cultured cells, and this was blocked by cardiac glycosides, inhibitors of Na+,K+-ATPase. Increases in Beclin 1/Na+,K+-ATPase interaction were also observed in tissues from starved mice, livers of patients with anorexia nervosa, brains of neonatal rats subjected to cerebral hypoxia-ischemia (HI), and kidneys of mice subjected to renal ischemia/reperfusion injury (IRI). Cardiac glycosides blocked the increased Beclin 1/Na+,K+-ATPase interaction during cerebral HI injury and renal IRI. In the mouse renal IRI model, cardiac glycosides reduced numbers of autotic cells in the kidney and improved clinical outcome. Moreover, blockade of endogenous cardiac glycosides increased Beclin 1/Na+,K+-ATPase interaction and autotic cell death in mouse hearts during exercise. Thus, Beclin 1/Na+,K+-ATPase interaction is increased in stress conditions, and cardiac glycosides decrease this interaction and autosis in both pathophysiological and physiological settings. This crosstalk between cellular machinery that generates and consumes energy during stress may represent a fundamental homeostatic mechanism.


Assuntos
Autofagia/fisiologia , Proteína Beclina-1/metabolismo , Isquemia/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Inanição/metabolismo , Animais , Morte Celular/fisiologia , Células Cultivadas , Glicosídeos , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA