Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38792702

RESUMO

The green and efficient remediation of soil cadmium (Cd) is an urgent task, and plant-microbial joint remediation has become a research hotspot due to its advantages. High-throughput sequencing and metabolomics have technical advantages in analyzing the microbiological mechanism of plant growth-promoting bacteria in improving phytoremediation of soil heavy metal pollution. In this experiment, a pot trial was conducted to investigate the effects of inoculating the plant growth-promoting bacterium Enterobacter sp. VY on the growth and Cd remediation efficiency of the energy plant Hybrid pennisetum. The test strain VY-1 was analyzed using high-throughput sequencing and metabolomics to assess its effects on microbial community composition and metabolic function. The results demonstrated that Enterobacter sp. VY-1 effectively mitigated Cd stress on Hybrid pennisetum, resulting in increased plant biomass, Cd accumulation, and translocation factor, thereby enhancing phytoremediation efficiency. Analysis of soil physical-chemical properties revealed that strain VY-1 could increase soil total nitrogen, total phosphorus, available phosphorus, and available potassium content. Principal coordinate analysis (PCoA) indicated that strain VY-1 significantly influenced bacterial community composition, with Proteobacteria, Firmicutes, Chloroflexi, among others, being the main differential taxa. Redundancy analysis (RDA) revealed that available phosphorus, available potassium, and pH were the primary factors affecting bacterial communities. Partial Least Squares Discriminant Analysis (PLS-DA) demonstrated that strain VY-1 modulated the metabolite profile of Hybrid pennisetum rhizosphere soil, with 27 differential metabolites showing significant differences, including 19 up-regulated and eight down-regulated expressions. These differentially expressed metabolites were primarily involved in metabolism and environmental information processing, encompassing pathways such as glutamine and glutamate metabolism, α-linolenic acid metabolism, pyrimidine metabolism, and purine metabolism. This study utilized 16S rRNA high-throughput sequencing and metabolomics technology to investigate the impact of the plant growth-promoting bacterium Enterobacter sp. VY-1 on the growth and Cd enrichment of Hybrid pennisetum, providing insights into the regulatory role of plant growth-promoting bacteria in microbial community structure and metabolic function, thereby improving the microbiological mechanisms of phytoremediation.

2.
J Hazard Mater ; 469: 134085, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38522197

RESUMO

Composite pollution by microplastics and heavy metals poses a potential threat to the soilplant system and has received increasing attention. Plant growth-promoting bacteria (PGPB) have good application potential for the remediation of combined microplastic and heavy metal pollution, but few related studies exist. The present study employed a pot experiment to investigate the effects of inoculation with the PGPB Bacillus sp. SL-413 and Enterobacter sp. VY-1 on sorghum growth and Cd accumulation under conditions of combined cadmium (Cd) and polyethylene (PE) pollution. Cd+PE composite contamination led to a significant reduction in sorghum length and biomass due to increased toxicity. Inoculation with Bacillus sp. SL-413 and Enterobacter sp. VY-1 alleviated the stress caused by Cd+PE complex pollution, and the dry weight of sorghum increased by 25.7% to 46.1% aboveground and by 12.3% to 45.3% belowground. Bacillus sp. SL-413 and Enterobacter sp. VY-1 inoculation increased the Cd content and accumulation in sorghum and improved the phytoremediation efficiency of Cd. The inoculation treatment effectively alleviated the nutrient stress caused by the reduction in soil mineral nutrients due to Cd+PE composite pollution. The composition of the soil bacterial communities was also affected by the Cd, Cd+PE and bacterial inoculation treatments, which affected the diversity of the soil bacterial communities. Network analyses indicated that bacterial inoculation regulated the interaction of rhizospheric microorganisms and increased the stability of soil bacterial communities. The Mantel test showed that the changes in the soil bacterial community and function due to inoculation with Bacillus sp. SL-413 and Enterobacter sp. VY-1 were important factors influencing sorghum growth and Cd remediation efficiency. The results of this study will provide new evidence for the research on joint plantmicrobe remediation of heavy metal and microplastic composite pollution.


Assuntos
Bacillus , Metais Pesados , Poluentes do Solo , Sorghum , Cádmio/análise , Biodegradação Ambiental , Plásticos , Polietileno , Solo , Rizosfera , Microplásticos , Metais Pesados/toxicidade , Metais Pesados/análise , Enterobacter , Poluentes do Solo/análise
3.
Sci Total Environ ; 900: 165608, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474064

RESUMO

Small floodgates in the river network area own some characteristics: considerable quantity, wide range and short adjustment time, and intercepts the one-dimensional constant flow of rivers, which induce a great impact on riverine water quality. In this study, a typical urban floodgate-controlled reach was selected, and analyzed through the monthly data of four pollutant indicators TN, TP, CODMn and NH3-N at six sampling sites S1-S6 in 2016-2018. The principal component analysis and correlation analysis showed that TP was a representative indicator and there was a positive correlation between various pollutants. The difference test and linear regression showed that the concentration of pollutants at different sampling points varied greatly, and the pollutant concentrations in the longitudinal direction of the river showed a cubic-linear regression. The cluster system and CCME WQI showed that the water quality in the urban floodgate-controlled reach is "marginal" state, and TN and NH3-N are severely exceeding the standard. The "cumulative changes" of the floodgate on the pollutant input to the environment appeared spatial heterogeneity.

4.
Heliyon ; 8(10): e11173, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36325135

RESUMO

Destabilization of the water cycle threatens human lives and livelihoods. Meanwhile our understanding of whether and how changes in vegetation cover could trigger transitions in moisture availability remains incomplete. This challenge calls for better evidence as well as for the theoretical concepts to describe it. Here we briefly summarize the theoretical questions surrounding the role of vegetation cover in the dynamics of a moist atmosphere. We discuss the previously unrecognized sensitivity of local wind power to condensation rate as revealed by our analysis of the continuity equation for a gas mixture. Using the framework of condensation-induced atmospheric dynamics, we then show that with the temperature contrast between land and ocean increasing up to a critical threshold, ocean-to-land moisture transport reaches a tipping point where it can stop or even reverse. Land-ocean temperature contrasts are affected by both global and regional processes, in particular, by the surface fluxes of sensible and latent heat that are strongly influenced by vegetation. Our results clarify how a disturbance of natural vegetation cover, e.g., by deforestation, can disrupt large-scale atmospheric circulation and moisture transport: an increase of sensible heat flux upon deforestation raises land surface temperature and this can elevate the temperature difference between land and ocean beyond the threshold. In view of the increasing pressure on natural ecosystems, successful strategies of mitigating climate change require taking into account the impact of vegetation on moist atmospheric dynamics. Our analysis provides a theoretical framework to assess this impact. The available data for the Northern Hemisphere indicate that the observed climatological land-ocean temperature contrasts are close to the threshold. This can explain the increasing fluctuations in the continental water cycle including droughts and floods and signifies a yet greater potential importance for large-scale forest conservation.

5.
BMC Infect Dis ; 22(1): 880, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36424534

RESUMO

The Omicron transmission has infected nearly 600,000 people in Shanghai from March 26 to May 31, 2022. Combined with different control measures taken by the government in different periods, a dynamic model was constructed to investigate the impact of medical resources, shelter hospitals and aerosol transmission generated by clustered nucleic acid testing on the spread of Omicron. The parameters of the model were estimated by least square method and MCMC method, and the accuracy of the model was verified by the cumulative number of asymptomatic infected persons and confirmed cases in Shanghai from March 26 to May 31, 2022. The result of numerical simulation demonstrated that the aerosol transmission figured prominently in the transmission of Omicron in Shanghai from March 28 to April 30. Without aerosol transmission, the number of asymptomatic subjects and symptomatic cases would be reduced to 130,000 and 11,730 by May 31, respectively. Without the expansion of shelter hospitals in the second phase, the final size of asymptomatic subjects and symptomatic cases might reach 23.2 million and 4.88 million by May 31, respectively. Our results also revealed that expanded vaccination played a vital role in controlling the spread of Omicron. However, even if the vaccination rate were 100%, the transmission of Omicron should not be completely blocked. Therefore, other control measures should be taken to curb the spread of Omicron, such as widespread antiviral therapies, enhanced testing and strict tracking quarantine measures. This perspective could be utilized as a reference for the transmission and prevention of Omicron in other large cities with a population of 10 million like Shanghai.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , China/epidemiologia , Quarentena , Aerossóis e Gotículas Respiratórios
6.
Huan Jing Ke Xue ; 42(1): 234-241, 2021 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-33372475

RESUMO

Planktonic fungi are important components of aquatic ecosystems, and analyses of their community composition and function have far-reaching significance for the ecological management and maintenance of the Danjiangkou reservoir. The composition and function of the planktonic fungal community in the surface water layer of the Danjiangkou Reservoir in October 2019 was investigated using Illumina MiSeq sequencing combined with FUNGuild analyses. According to the results, the reservoir community is primarily composed of 6 phyla 213 genera, with Ascomycota and Basidiomycota being the dominant phyla. The water quality monitoring results for the Danjiangkou Reservoir met the Grade Ⅰ or Ⅱ water quality standards for the Environmental Quality Standards for Surface Water (GB 38382-2002). A redundancy analysis (RDA) of the planktonic fungal community and environmental factors showed that TN, TP, T, ORP, and TLI are important factors influencing the distribution of planktonic fungi. The Spearman correlation analysis showed that Alternaria, Cladosporium, Penicillium, Lodderomyces, and Acremonium were significantly correlated with physical and chemical water quality parameters. FUNGuild was used to predict the nutritional and functional groups of planktonic fungi, and the results showed that pathotrophs, saprotrophs, and pathotroph-saprotrophs were the major components. The pathotroph composition analysis showed that the proportions of plant pathogens and animal pathogens in the Heijizui samples were significantly higher than those observed in the other monitoring sites. The community composition, function, and influencing factors of the planktonic fungi community in the Danjiangkou Reservoir were investigated and indicated that it is potentially at ecological risk and more attention needs to be paid to planktonic fungi in the biological monitoring of water quality.


Assuntos
Micobioma , Plâncton , Animais , China , Ecossistema , Fungos/genética , Qualidade da Água
7.
Entropy (Basel) ; 22(9)2020 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-33286794

RESUMO

As humanity struggles to find a path to resilience amidst global change vagaries, understanding organizing principles of living systems as the pillar for human existence is rapidly growing in importance. However, finding quantitative definitions for order, complexity, information and functionality of living systems remains a challenge. Here, we review and develop insights into this problem from the concept of the biotic regulation of the environment developed by Victor Gorshkov (1935-2019). Life's extraordinary persistence-despite being a strongly non-equilibrium process-requires a quantum-classical duality: the program of life is written in molecules and thus can be copied without information loss, while life's interaction with its non-equilibrium environment is performed by macroscopic classical objects (living individuals) that age. Life's key energetic parameter, the volume-specific rate of energy consumption, is maintained within universal limits by most life forms. Contrary to previous suggestions, it cannot serve as a proxy for "evolutionary progress". In contrast, ecosystem-level surface-specific energy consumption declines with growing animal body size in stable ecosystems. High consumption by big animals is associated with instability. We suggest that the evolutionary increase in body size may represent a spontaneous loss of information about environmental regulation, a manifestation of life's algorithm ageing as a whole.

8.
Sci Rep ; 10(1): 16523, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020580

RESUMO

Glutamate dehydrogenase (GDH) is a key enzyme interlinking carbon and nitrogen metabolism. Recent discoveries of the GDH specific role in breast cancer, hyperinsulinism/hyperammonemia (HI/HA) syndrome, and neurodegenerative diseases have reinvigorated interest on GDH regulation, which remains poorly understood despite extensive and long standing studies. Notwithstanding the growing evidence of the complexity of allosteric network behind GDH regulation, identifications of allosteric factors and associated mechanisms are paramount to deepen our understanding of the complex dynamics that regulate GDH enzymatic activity. Combining structural analyses of cryo-electron microscopy data with molecular dynamic simulations, here we show that the cofactor NADH is a key player in the GDH regulation process. Our structural analysis indicates that, binding to the regulatory sites in proximity of the antenna region, NADH acts as a positive allosteric modulator by enhancing both the affinity of the inhibitor GTP binding and inhibition of GDH catalytic activity. We further show that the binding of GTP to the NADH-bound GDH activates a triangular allosteric network, interlinking the inhibitor with regulatory and catalytic sites. This allostery produces a local conformational rearrangement that triggers an anticlockwise rotational motion of interlinked alpha-helices with specific tilted helical extension. This structural transition is a fundamental switch in the GDH enzymatic activity. It introduces a torsional stress, and the associated rotational shift in the Rossmann fold closes the catalytic cleft with consequent inhibition of the deamination process. In silico mutagenesis examinations further underpin the molecular basis of HI/HA dominant mutations and consequent over-activity of GDH through alteration of this allosteric communication network. These results shed new light on GDH regulation and may lay new foundation in the design of allosteric agents.


Assuntos
Regulação Alostérica/fisiologia , Glutamato Desidrogenase/metabolismo , Glutamato Desidrogenase/ultraestrutura , Difosfato de Adenosina/metabolismo , Biofísica/métodos , Biologia Computacional/métodos , Microscopia Crioeletrônica/métodos , Desaminação , Guanosina Trifosfato/metabolismo , Hiperamonemia/genética , Modelos Moleculares , Simulação de Acoplamento Molecular/métodos , Mutação/efeitos dos fármacos , NAD/metabolismo , Conformação Proteica
9.
Artigo em Inglês | MEDLINE | ID: mdl-32079120

RESUMO

The water-level fluctuation zone (WLFZ) is a transitional zone between terrestrial and aquatic ecosystems. Plant communities that are constructed artificially in the WLFZ can absorb and retain nutrients such as nitrogen (N) and phosphorus (P). However, the microbial community composition and function associated with this process have not been elucidated. In this study, four artificially constructed plant communities, including those of herbs (Cynodon dactylon and Chrysopogon zizanioides), trees (Metasequoia glyptostroboides), and shrubs (Salix matsudana) from the newly formed WLFZ of the Danjiangkou Reservoir were evaluated. The bacterial community compositions were analyzed by 16S rRNA gene sequencing using a MiSeq platform, and the functions of these communities were assessed via Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis. The results showed that the bacterial communities primarily comprised 362 genera from 24 phyla, such as Proteobacteria, Acidobacteria, Actinobacteria, and Gemmatimonadetes, showing the richness of the community composition. Planting altered the bacterial community composition, with varying effects observed among the different plant types. The bacterial community functional analysis revealed that these bacteria were primarily associated with six biological metabolic pathway categories (e.g., metabolism, genetic information processing, and environmental information processing) with 34 subfunctions, showing the richness of community functions. The planting of M. glyptostroboides, S. matsudana, and C. dactylon improved the metabolic capabilities of bacterial communities. N- and P-cycling gene analysis showed that planting altered the N- and P-cycling metabolic capacities of soil bacteria. The overall N- and P-metabolic capacity was highly similar between C. dactylon and C. zizanioides samples and between S. matsudana and M. glyptostroboides samples. The results of this study provide a preliminary analysis of soil bacterial community structure and function in the WLFZ of the Danjiangkou Reservoir and provides a reference for vegetation construction in this zone.


Assuntos
Microbiota , Chuva , Rizosfera , Abastecimento de Água , Fenômenos Fisiológicos Bacterianos , China , Lagos , Estações do Ano , Microbiologia do Solo
10.
Biophys J ; 118(4): 898-908, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31699333

RESUMO

Defective nitrate signaling in plants causes disorder in nitrogen metabolism, and it negatively affects nitrate transport systems, which toggle between high- and low-affinity modes in variable soil nitrate conditions. Recent discovery of a plasma membrane nitrate transceptor protein NRT1.1-a transporter cum sensor-provides a clue on this toggling mechanism. However, the general mechanistic description still remains poorly understood. Here, we illustrate adaptive responses and regulation of NRT1.1-mediated nitrate signaling in a wide range of extracellular nitrate concentrations. The results show that the homodimeric structure of NRT1.1 and its dimeric switch play an important role in eliciting specific cytosolic calcium waves sensed by the calcineurin-B-like calcium sensor CBL9, which activates the kinase CIPK23, in low nitrate concentration that is, however, impeded in high nitrate concentration. Nitrate binding at the high-affinity unit initiates NRT1.1 dimer decoupling and priming of the Thr101 site for phosphorylation by CIPK23. This phosphorylation stabilizes the NRT1.1 monomeric state, acting as a high-affinity nitrate transceptor. However, nitrate binding in both monomers, retaining the unmodified NRT1.1 state through dimerization, attenuates CIPK23 activity and thereby maintains the low-affinity mode of nitrate signaling and transport. This phosphorylation-led modulation of NRT1.1 activity shows bistable behavior controlled by an incoherent feedforward loop, which integrates nitrate-induced positive and negative regulatory effects on CIPK23. These results, therefore, advance our molecular understanding of adaptation in fluctuating nutrient availability and are a way forward for improving plant nitrogen use efficiency.


Assuntos
Arabidopsis , Nitratos , Proteínas de Transporte de Ânions , Arabidopsis/metabolismo , Transportadores de Nitrato , Nitratos/metabolismo , Proteínas de Plantas/metabolismo
11.
Front Microbiol ; 10: 1455, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316489

RESUMO

Previous analyses of plant growth-promoting bacteria (PGPB) combined with the remediation of heavy metal pollution in soil have largely been performed under potting or greenhouse conditions, and in situ remediation experiments under field conditions have rarely been reported. In this study, the effects of the metal-resistant PGPB Microbacterium oxydans JYC17, Pseudomonas thivervalensis Y1-3-9, and Burkholderia cepacia J62 on soil Cu pollution under rape remediation were studied in the farmland surrounding the Nanjing Jiuhuashan copper mining region in China. Following inoculation treatment for 50 days, the biomasses of the rape inoculated with strains JYC17, Y1-3-9, and J62 increased, and the total amounts of Cu uptake increased by 113.38, 66.26, and 67.91%, respectively, the translocation factor (TF) of rape inoculated with J62 was 0.85, a significant increase of 70.68%, thus improving the Cu remediation efficiency of the rape. Y1-3-9 and J62 affected the bioavailability of Cu in the soil, and the water-soluble Cu contents were increased by 10.13 and 41.77%, respectively, compared with the control. The antioxidant activities in the rape leaves showed that the tested bacteria increased the contents of antioxidant non-enzymatic substances, including ascorbic acid (ASA) and glutathione (GSH), which were increased by 40.24-91.22% and 9.89-17.67%, respectively, thereby reducing the oxidative stress caused by heavy metals and the contents of thiobarbituric acid-reactive substances (TBARS) and peroxidase (POD). PCR-denaturing gradient gel electrophoresis (PCR-DGGE) was used to analyze the effects of the tested bacteria on the cultivation-dependent and cultivation-independent bacterial communities in the root endosphere and rhizosphere soil of the rape. The sequencing results of the DGGE bands indicated that the tested bacteria colonized the endosphere and rhizosphere, and they became an important component of the cultivation-dependent bacteria. The canonical correspondence analysis (CCA) of the DGGE profile and similarity cluster analysis showed that the tested bacteria affected the cultivation-dependent and cultivation-independent bacterial communities in the root endosphere and rhizosphere. In this experiment, the effects and mechanisms of the combined plant-microbe remediation under field conditions were preliminarily studied, and the results are expected to provide a theoretical basis for future combined remediation experiments.

12.
iScience ; 2: 41-50, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-30428377

RESUMO

Plant adaptation in variable soil nitrate concentrations involves sophisticated signaling and transport systems that modulate a variety of physiological and developmental responses. However, we know very little about their molecular mechanisms. It has recently been reported that many of these responses are regulated by a transceptor NRT1.1, a transporter cum receptor of nitrate signaling. NRT1.1 displays dual-affinity modes of nitrate binding and establishes phosphorylated/non-phosphorylated states at the amino acid residue threonine 101 in response to fluctuating nitrate concentrations. Here we report that intrinsic structural asymmetries between the protomers of the homodimer NRT1.1 provide a functional basis for having dual-affinity modes of nitrate binding and play a pivotal role for the phosphorylation switch. Nitrate-triggered local conformational changes facilitate allosteric communications between the nitrate binding and the phosphorylation site in one protomer, but such communications are impeded in the other. Structural analysis therefore suggests the functional relevance of NRT1.1 interprotomer asymmetries.

14.
R Soc Open Sci ; 4(1): 160768, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28280580

RESUMO

Nitrogen is cycled throughout ecosystems by a suite of biogeochemical processes. The high complexity of the nitrogen cycle resides in an intricate interplay between reversible biochemical pathways alternatively and specifically activated in response to diverse environmental cues. Despite aggressive research, how the fundamental nitrogen biochemical processes are assembled and maintained in fluctuating soil redox conditions remains elusive. Here, we address this question using a kinetic modelling approach coupled with dynamical systems theory and microbial genomics. We show that alternative biochemical pathways play a key role in keeping nitrogen conversion and conservation properties invariant in fluctuating environments. Our results indicate that the biochemical network holds inherent adaptive capacity to stabilize ammonium and nitrate availability, and that the bistability in the formation of ammonium is linked to the transient upregulation of the amo-hao mediated nitrification pathway. The bistability is maintained by a pair of complementary subsystems acting as either source or sink type systems in response to soil redox fluctuations. It is further shown how elevated anthropogenic pressure has the potential to break down the stability of the system, altering substantially ammonium and nitrate availability in the soil, with dramatic effects on biodiversity.

16.
Integr Biol (Camb) ; 8(11): 1126-1132, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27747338

RESUMO

Impaired glutamate dehydrogenase (GDH) sensitivity to its inhibitors causes excessive insulin secretion by pancreatic beta-cells and defective ammonia metabolism in the liver. These symptoms are commonly associated with hyperinsulinism/hyperammonemia syndrome (HI/HA), which causes recurrent hypoglycaemia in early infancy. Hepatic localization of GDH amination and deamination activities linked with the urea cycle is known to be involved in ammonia metabolism and detoxification. Although deamination activities of hepatic GDH in the periportal zones of liver lobules and its connection to the urea cycle have been exhaustively investigated, physiological roles of GDH amination activity observed at pericentral zones have often been overlooked. Using kinetic modelling approaches, here we report a new role for hepatic GDH amination kinetics in maintaining ammonia homeostasis under an excess intrahepatocyte input of ammonium. We have shown that α-ketoglutarate substrate inhibition kinetics of GDH, which include both random and obligatory ordered association/dissociation reactions, robustly control the ratio between glutamate and ammonium under a wide range of intracellular substrate variation. Dysregulation of this activity under pericentral nitrogen insufficiency contributes to the breaking down of ammonia homeostasis and thereby can significantly affect HI/HA syndrome.


Assuntos
Amônia/metabolismo , Compostos de Amônio/metabolismo , Glutamato Desidrogenase/metabolismo , Hepatócitos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Modelos Biológicos , Aminação/fisiologia , Aminas/metabolismo , Animais , Simulação por Computador , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica/fisiologia , Homeostase/fisiologia , Humanos , Cinética , Especificidade por Substrato , Distribuição Tecidual
17.
PLoS One ; 11(6): e0156170, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27280726

RESUMO

To explore the differences between the extreme SIV infection phenotypes, nonprogression (BEN: benign) to AIDS in sooty mangabeys (SMs) and progression to AIDS (MAL: malignant) in rhesus macaques (RMs), we performed an integrated dual positive-negative connectivity (DPNC) analysis of gene coexpression networks (GCN) based on publicly available big data sets in the GEO database of NCBI. The microarray-based gene expression data sets were generated, respectively, from the peripheral blood of SMs and RMs at several time points of SIV infection. Significant differences of GCN changes in DPNC values were observed in SIV-infected SMs and RMs. There are three groups of enriched genes or pathways (EGPs) that are associated with three SIV infection phenotypes (BEN+, MAL+ and mixed BEN+/MAL+). The MAL+ phenotype in SIV-infected RMs is specifically associated with eight EGPs, including the protein ubiquitin proteasome system, p53, granzyme A, gramzyme B, polo-like kinase, Glucocorticoid receptor, oxidative phosyphorylation and mitochondrial signaling. Mitochondrial (endosymbiotic) dysfunction is solely present in RMs. Specific BEN+ pattern changes in four EGPs are identified in SIV-infected SMs, including the pathways contributing to interferon signaling, BRCA1/DNA damage response, PKR/INF induction and LGALS8. There are three enriched pathways (PRR-activated IRF signaling, RIG1-like receptor and PRR pathway) contributing to the mixed (BEN+/MAL+) phenotypes of SIV infections in RMs and SMs, suggesting that these pathways play a dual role in the host defense against viral infections. Further analysis of Hub genes in these GCNs revealed that the genes LGALS8 and IL-17RA, which positively regulate the barrier function of the gut mucosa and the immune homeostasis with the gut microbiota (exosymbiosis), were significantly differentially expressed in RMs and SMs. Our data suggest that there exists an exo- (dysbiosis of the gut microbiota) and endo- (mitochondrial dysfunction) symbiotic imbalance (EESI) in HIV/SIV infections. Dissecting the mechanisms of the exo-endo symbiotic balance (EESB) that maintains immune homeostasis and the EESI problems in HIV/SIV infections may lead to a better understanding of the pathogenesis of AIDS and the development of novel interventions for the rational control of this disease.


Assuntos
Cercocebus atys/genética , Redes Reguladoras de Genes , Macaca mulatta/genética , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Vírus da Imunodeficiência Símia/isolamento & purificação , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Cercocebus atys/imunologia , Cercocebus atys/virologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Macaca mulatta/imunologia , Macaca mulatta/virologia , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Especificidade da Espécie
18.
Sci Rep ; 6: 27905, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27291688

RESUMO

Selecting appropriate initial values is critical for parameter estimation in nonlinear photosynthetic light response models. Failed convergence often occurs due to wrongly selected initial values when using currently available methods, especially the kind of local optimization. There are no reliable methods that can resolve the conundrum of selecting appropriate initial values. After comparing the performance of the Levenberg-Marquardt algorithm and other three algorithms for global optimization, we develop a general method for parameter estimation in four photosynthetic light response models, based on the use of Differential Evolution (DE). The new method was shown to successfully provide good fits (R(2) > 0.98) and robust parameter estimates for 42 datasets collected for 21 plant species under the same initial values. It suggests that the DE algorithm can efficiently resolve the issue of hyper initial-value sensitivity when using local optimization methods. Therefore, the DE method can be applied to fit the light-response curves of various species without considering the initial values.


Assuntos
Luz , Modelos Biológicos , Fotossíntese/efeitos da radiação , Algoritmos , Plantas/metabolismo
19.
Sci Rep ; 6: 26470, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27198665

RESUMO

Global warming is likely to cause overall drying of land surfaces and aridity increasing leading to expansion of dry climate zones. There is an increased risk of extremely arid environment and large deserts developed progressively in the central Asia. However, the key factors causing the drying in mid-Asia remain inconclusive. Here, we analyzed the relationship among precipitation, water vapor transportation in Tarim River Basin (TRB) and Multiple Atmospheric Circulation (MAC) to explore the mechanism of MAC driving the drying in TRB, through comparing MAC between abundant and scarce precipitation years. We found that Westerly Circulation (WC) and Asian Summer Monsoon (ASM) are likely to promote the precipitation respectively. Whereas, they not only have their own influence but also restrict each other and facilitate the forming of peculiar water vapor transport channel for TRB, which is probably to restrain the precipitation and its distribution pattern and accelerate the drying in this region. Our results enrich the findings on mechanisms of wet places becoming wetter while dry areas getting drier under the global warming.

20.
Front Plant Sci ; 6: 856, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26528316

RESUMO

Tree-rings are often assumed to approximate a circular shape when estimating forest productivity and carbon dynamics. However, tree rings are rarely, if ever, circular, thereby possibly resulting in under- or over-estimation in forest productivity and carbon sequestration. Given the crucial role played by tree ring data in assessing forest productivity and carbon storage within a context of global change, it is particularly important that mathematical models adequately render cross-sectional area increment derived from tree rings. We modeled the geometric shape of tree rings using the superellipse equation and checked its validation based on the theoretical simulation and six actual cross sections collected from three conifers. We found that the superellipse better describes the geometric shape of tree rings than the circle commonly used. We showed that a spiral growth trend exists on the radial section over time, which might be closely related to spiral grain along the longitudinal axis. The superellipse generally had higher accuracy than the circle in predicting the basal area increment, resulting in an improved estimate for the basal area. The superellipse may allow better assessing forest productivity and carbon storage in terrestrial forest ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...