RESUMO
Chamaecyparis hodginsii seedlings undergo significant changes during growth due to different nutrient environments and adjacent plant competition, which is evident in the physiological plasticity changes in their roots. Therefore, in this experiment, 20 one-year-old elite C. hodginsii family seedlings were selected as the test objects, and the different nutrient environments and adjacent plant competition environments in nature were artificially simulated. Four nutrient environments (N heterogeneous nutrient environment, P heterogeneous nutrient environment, K heterogeneous nutrient environment, and homogeneous environment) and three planting patterns (single plant, conspecific neighbor, and heterospecific neighbor) were set up to determine the differences in root physiological indexes and plasticity of different family seedlings, and the families and treatment combinations with higher comprehensive evaluation were selected. The transcriptome sequencing of fine roots of C. hodginsii under different treatments was performed to analyze the differentially expressed genes. The results showed that the root activity, antioxidant enzyme activity, and nutrient element content of C. hodginsii seedlings in the N and P heterogeneous environments were higher than those in the homogeneous nutrient environment, while there was no significant difference between the K heterogeneous nutrient environment and the homogeneous environment, but MDA content was higher than that in other nutrient environments. The root activity and antioxidant enzyme activity in the competitive patterns were generally higher than those in the single plant and reached the peak in the heterospecific neighbor. The root physiological plasticity index of line 490 was the highest, but the comprehensive evaluation of root physiological indexes of lines 539 and 535 was better. The pattern with the highest comprehensive evaluation score was P heterogeneous nutrient environment × heterospecific neighbor. The effects of the N and P heterogeneous nutrient environments on root transcriptome genes were similar, which significantly increased DNA transcription and regulatory factor activity, while K heterogeneous nutrient environment focused on the regulation of root enzyme activity. The heterogeneous nutrient environment induces the conduction of hormone signals in the roots of C. hodginsii and induces the synthesis of phenylpropanone. The biosynthesis of phenylpropanone in the roots of C. hodginsii will increase significantly under competitive patterns. In summary, the N and P heterogeneous nutrient environments and the heterospecific neighbor can improve the root physiological indexes of C. hodginsii families, and the root physiological indexes of lines 539 and 535 are the best. The nutrient environment and competition pattern mainly affect the root system to transmit hormone signals to regulate enzyme activity.
RESUMO
Fokienia hodginsii (F. hodginsii), belonging to the genus Fokienia of the Cupressaceae. F. hodginsii has significant application value due to its wood properties and great research value in evolutionary studies as a gymnosperm. However, the genome of F. hodginsii remains unknown due to the large size of gymnosperms genome. Pacific Bioscience sequencing, Hi-C mapping, whole-genome Bisulfite Sequencing (BS-Seq), long-read isoform sequencing (Iso-Seq), direct RNA sequencing (DRS), quantitative proteomics, and metabonomics analysis are employed to facilitate genome assembly, gene annotation, and investigation into epigenetic mechanisms. In this study, the 10G F. hodginsii genome is assembled into 11 chromosomes. Furthermore, 50 521 protein-coding genes are annotated and determined that 65% of F. hodginsii genome comprises repetitive sequences. It is discovered that transposable element (TE)-including introns is associated with higher expression. The DNA methylome of F. hodginsii reveals that xylem has a higher DNA methylation level compared to callus. Moreover, DRS reveals the significant alterations in RNA full-length ratio, which potentially associated with poly(A) length (PAL) and alternative polyadenylation (APA). Finally, the morphology measurement and metabonomics analysis revealed the difference of 14 cultivars. In summary, the genomes and epigenetics datasets provide a molecular basis for callus formation in the gymnosperm family.
RESUMO
MOTIVATION: Advances in whole-genome single-cell DNA sequencing (scDNA-seq) have led to the development of numerous methods for detecting copy number aberrations (CNAs), a key driver of genetic heterogeneity in cancer. While most of these methods are limited to the inference of total copy number, some recent approaches now infer allele-specific CNAs using innovative techniques for estimating allele-frequencies in low coverage scDNA-seq data. However, these existing allele-specific methods are limited in their segmentation strategies, a crucial step in the CNA detection pipeline. RESULTS: We present SEACON (Single-cell Estimation of Allele-specific COpy Numbers), an allele-specific copy number profiler for scDNA-seq data. SEACON uses a Gaussian Mixture Model to identify latent copy number states and breakpoints between contiguous segments across cells, filters the segments for high-quality breakpoints using an ensemble technique, and adopts several strategies for tolerating noisy read-depth and allele frequency measurements. Using a wide array of both real and simulated datasets, we show that SEACON derives accurate copy numbers and surpasses existing approaches under numerous experimental conditions, and identify its strengths and weaknesses. AVAILABILITY AND IMPLEMENTATION: SEACON is implemented in Python and is freely available open-source from https://github.com/NabaviLab/SEACON and https://doi.org/10.5281/zenodo.12727008.
Assuntos
Alelos , Variações do Número de Cópias de DNA , Análise de Sequência de DNA , Análise de Célula Única , Análise de Célula Única/métodos , Humanos , Análise de Sequência de DNA/métodos , Algoritmos , Software , Frequência do Gene , Neoplasias/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodosRESUMO
The rapid restoration and renewal of the moso bamboo logging zone after strip logging has emerged as a key research area, particularly regarding whether nutrient accumulation and utilization in reserve zones can aid in the restoration and regeneration of the logging zone. In this study, a dynamic 15N isotope tracking experiment was conducted by injecting labeled urea fertilizer into bamboo culms. Logging zones and reserve zones of 6 m, 8 m, and 10 m widths were established. The conventional selective logging treatment served as a control (Con). Measurements were taken in May and October to assess the differences in nitrogen accumulation ability, utilization rates, and nutrient content across different organs in bamboo forests at different growth stages and under different treatments. Principal component analysis was conducted to evaluate and determine the importance of each indicator and strip logging treatment comprehensively. The results showed that various bamboo organs exhibited higher nitrogen accumulation and utilization rates during the peak growth period compared to the late growth period. Leaves had the highest nitrogen accumulation and utilization rates than the other organs. The average C content in various bamboo organs under different logging treatments exhibited subtle differences, irrespective of variation in logging width treatments. Bamboo culm exhibited the highest carbon accumulation. The C content in various bamboo organs was higher during the peak growth period than in the late growth period. The nitrogen content peaked in the leaves during the two growth stages and was significantly higher compared to the other organs. Most bamboo organs in the logging zones exhibited relatively higher nitrogen content than in the reserve zone and Con group. The P content was highest in bamboo leaves compared with other organs across the different strip logging treatments. Principal component analysis revealed relatively high absolute values of the coefficients for the C content, bamboo stump C content, and culm Ndff%. Log8 and Res10 zones had the highest comprehensive evaluation scores, indicating that Log8 and Res10 had the best effect on the promotion of nitrogen utilization and nutrient accumulation in various organs of moso bamboo.
RESUMO
The double-cone ignition (DCI) scheme has been proposed as one of the alternative approaches to inertial confinement fusion, based on direct-drive and fast-ignition, in order to reduce the requirement for the driver energy. To evaluate the conical implosion energetics from the laser beams to the plasma flows, a series of experiments have been systematically conducted. The results indicate that 89%-96% of the laser energy was absorbed by the target, with moderate stimulated Raman scatterings. Here 2%-6% of the laser energy was coupled into the plasma jets ejected from the cone tips, which was mainly restricted by the mass reductions during the implosions inside the cones. The supersonic dense jets with a Mach number of 4 were obtained, which is favorable for forming a high-density, nondegenerated plasma core after the head-on collisions. These findings show encouraging results in terms of energy transport of the conical implosions in the DCI scheme.
RESUMO
Tripartite motif-containing protein 7 (TRIM7), as an E3 ligase, plays an important regulatory role in various physiological and pathological processes. However, the role of TRIM7 in gastric cancer (GC) is still undefined. Our study detected the expression of TRIM7 in clinical specimens and investigated the regulatory effect and molecular mechanism of TRIM7 on GC progression through in vitro and in vivo experiments. Our finding showed that TRIM7 was significantly downregulated in GC, and patients with high expression of TRIM7 showed long overall survival. Both in vitro and in vivo experiments showed that TRIM7 dramatically suppressed the malignant progression of GC. Further investigation showed that ferroptosis was the major death type mediated by TRIM7. Mechanistically, TRIM7 interacted with SLC7A11 through its B30.2/SPRY domain and promoted Lys48-linked polyubiquitination of SLC7A11, which effectively suppressing SLC7A11/GPX4 axis and inducing ferroptosis in GC cells. In vivo experiments and correlation analysis based on clinical specimens further confirmed that TRIM7 inhibited tumor growth through suppressing SLC7A11/GPX4 axis. In conclusion, our investigation demonstrated for the first time that TRIM7, as a tumor suppressor, induced ferroptosis via targeting SLC7A11 in GC, which provided a new strategy for the molecular therapy of GC by upregulating TRIM7.
Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Ubiquitina-Proteína Ligases/genética , Transformação Celular Neoplásica , Carcinogênese , Ubiquitinação , Sistema y+ de Transporte de Aminoácidos/genética , Proteínas com Motivo Tripartido/genéticaRESUMO
BACKGROUND: Gastric cancer (GC) is associated with high mortality rates. Bile acids (BAs) reflux is a well-known risk factor for GC, but the specific mechanism remains unclear. During GC development in both humans and animals, BAs serve as signaling molecules that induce metabolic reprogramming. This confers additional cancer phenotypes, including ferroptosis sensitivity. Ferroptosis is a novel mode of cell death characterized by lipid peroxidation that contributes universally to malignant progression. However, it is not fully defined if BAs can influence GC progression by modulating ferroptosis. AIM: To reveal the mechanism of BAs regulation in ferroptosis of GC cells. METHODS: In this study, we treated GC cells with various stimuli and evaluated the effect of BAs on the sensitivity to ferroptosis. We used gain and loss of function assays to examine the impacts of farnesoid X receptor (FXR) and BTB and CNC homology 1 (BACH1) overexpression and knockdown to obtain further insights into the molecular mechanism involved. RESULTS: Our data suggested that BAs could reverse erastin-induced ferroptosis in GC cells. This effect correlated with increased glutathione (GSH) concentrations, a reduced GSH to oxidized GSH ratio, and higher GSH peroxidase 4 (GPX4) expression levels. Subsequently, we confirmed that BAs exerted these effects by activating FXR, which markedly increased the expression of GSH synthetase and GPX4. Notably, BACH1 was detected as an essential intermediate molecule in the promotion of GSH synthesis by BAs and FXR. Finally, our results suggested that FXR could significantly promote GC cell proliferation, which may be closely related to its anti-ferroptosis effect. CONCLUSION: This study revealed for the first time that BAs could inhibit ferroptosis sensitivity through the FXR-BACH1-GSH-GPX4 axis in GC cells. This work provided new insights into the mechanism associated with BA-mediated promotion of GC and may help identify potential therapeutic targets for GC patients with BAs reflux.
Assuntos
Ferroptose , Neoplasias Gástricas , Animais , Humanos , Ácidos e Sais Biliares , Transdução de SinaisRESUMO
Excessive cavity pressure may result in a sand casting explosion, and corresponding measures should be adopted to prevent these consequences. In this study, the pressure variations in the cavity were first investigated based upon on-site testing by taking the resin contents into consideration, and then the evolution characteristics of sand casting explosion accidents were analyzed in depth by system dynamics, chaos theory, and the bow-tie model. When the resin contents are 1.3 wt%, 1.4 wt%, and 1.5 wt%, the pressures of the gas vent increase by 27.0 Pa, 32.8 Pa, and 35.6 Pa, respectively. To reduce the pressure of the cavity, the resin content should be reduced. The evolutionary process of sand casting explosion accidents has a noticeable butterfly effect and randomness, whose occurrence is comprehensively affected by human, object, environment, management and emergency subsystems. The leading causes of sand casting explosion accidents mainly include the extensive gas evolution characteristics of foundry sand, cavity exhaust blockage, and inadequate safety monitoring. The leading consequences of sand casting explosion accidents mainly include casualties, secondary disasters, and social panic. The implications of these findings concerning sand casting explosion accidents can be regarded as the foundation for accident prevention in practice.
RESUMO
Background: The obesity epidemic has been on the rise due to changes in living standards and lifestyles. To combat this issue, sleeve gastrectomy (SG) has emerged as a prominent bariatric surgery technique, offering substantial weight reduction. Nevertheless, the mechanisms that underlie SG-related bodyweight loss are not fully understood. Methods: In this study, we conducted a collection of preoperative and 3-month postoperative serum and fecal samples from patients who underwent laparoscopic SG at the First Affiliated Hospital of Shandong First Medical University (Jinan, China). Here, we took an unbiased approach of multi-omics to investigate the role of SG-altered gut microbiota in anti-obesity of these patients. Non-target metabolome sequencing was performed using the fecal and serum samples. Results: Our data show that SG markedly increased microbiota diversity and Rikenellaceae, Alistipes, Parabacteroides, Bactreoidales, and Enterobacteraies robustly increased. These compositional changes were positively correlated with lipid metabolites, including sphingolipids, glycerophospholipids, and unsaturated fatty acids. Increases of Rikenellaceae, Alistipes, and Parabacteroide were reversely correlated with body mass index (BMI). Conclusion: In conclusion, our findings provide evidence that SG induces significant alterations in the abundances of Rikenellaceae, Alistipes, Parabacteroides, and Bacteroidales, as well as changes in lipid metabolism-related metabolites. Importantly, these changes were found to be closely linked to the alleviation of obesity. On the basis of these findings, we have identified a number of microbiotas that could be potential targets for treatment of obesity.
Assuntos
Cirurgia Bariátrica , Microbioma Gastrointestinal , Humanos , Metabolismo dos Lipídeos , Obesidade/cirurgia , Cirurgia Bariátrica/métodos , Gastrectomia/métodosRESUMO
BACKGROUND: The recent development of high-throughput sequencing has created a large collection of multi-omics data, which enables researchers to better investigate cancer molecular profiles and cancer taxonomy based on molecular subtypes. Integrating multi-omics data has been proven to be effective for building more precise classification models. Most current multi-omics integrative models use either an early fusion in the form of concatenation or late fusion with a separate feature extractor for each omic, which are mainly based on deep neural networks. Due to the nature of biological systems, graphs are a better structural representation of bio-medical data. Although few graph neural network (GNN) based multi-omics integrative methods have been proposed, they suffer from three common disadvantages. One is most of them use only one type of connection, either inter-omics or intra-omic connection; second, they only consider one kind of GNN layer, either graph convolution network (GCN) or graph attention network (GAT); and third, most of these methods have not been tested on a more complex classification task, such as cancer molecular subtypes. RESULTS: In this study, we propose a novel end-to-end multi-omics GNN framework for accurate and robust cancer subtype classification. The proposed model utilizes multi-omics data in the form of heterogeneous multi-layer graphs, which combine both inter-omics and intra-omic connections from established biological knowledge. The proposed model incorporates learned graph features and global genome features for accurate classification. We tested the proposed model on the Cancer Genome Atlas (TCGA) Pan-cancer dataset and TCGA breast invasive carcinoma (BRCA) dataset for molecular subtype and cancer subtype classification, respectively. The proposed model shows superior performance compared to four current state-of-the-art baseline models in terms of accuracy, F1 score, precision, and recall. The comparative analysis of GAT-based models and GCN-based models reveals that GAT-based models are preferred for smaller graphs with less information and GCN-based models are preferred for larger graphs with extra information.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias , Conhecimento , Aprendizagem , Redes Neurais de Computação , Neoplasias/genéticaRESUMO
BACKGROUND: This study was designed to clarify the function and potential mechanism of gentiopicroside (GPS) in regulating the malignant progression of gastric cancer (GC) through in vitro cellular experiments and in vivo animal models. METHODS: AGS and HGC27 cells were divided into control group and GPS treatment groups (50 µM and 100 µM). Then, the cellular proliferation, colony formation, migration, invasion, and apoptosis were detected, respectively. Transmission electron microscope (TEM) was used to observe the mitochondrial changes, and the mitochondrial membrane potential (MMP) was determined using the JC-1 commercial kit. Network pharmacology analysis was utilized to screen the potential molecule that may be related to the GPS activity on GC cells, followed by validation tests using Western blot in the presence of specific activator. In addition, xenografted tumor model was established using BALB/c nude mice via subcutaneous injection of HGC27 cells, along with pulmonary metastasis model. Then, the potential effects of GPS on the tumor growth and metastasis were detected by immunohistochemistry (IHC) and HE staining. RESULTS: GPS inhibited the proliferation, invasion and migration of GC cell lines in a dose-dependent manner. Besides, it could induce mitochondrial apoptosis. Epidermal growth factor receptor (EGFR) may be a potential target for GPS action in GC by network pharmacological analysis. GPS inhibits activation of the EGFR/PI3K/AKT axis by reducing EGFR expression. In vivo experiments indicated that GPS induced significant decrease in tumor volume, and it also inhibited the pulmonary metastasis. For the safety concerns, GPS caused no obvious toxicities to the heart, liver, spleen, lung and kidney tissues. IHC staining confirmed GPS downregulated the activity of EGFR/PI3K/AKT. CONCLUSIONS: Our investigation demonstrated for the first time that GPS could inhibit GC malignant progression by targeting the EGFR/PI3K/AKT signaling pathway. This study indicated that GPS may be serve as a safe anti-tumor drug for further treatment of GC.
Assuntos
Glucosídeos Iridoides , Proteínas Proto-Oncogênicas c-akt , Neoplasias Gástricas , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Transdução de Sinais , Receptores ErbB/metabolismo , Receptores ErbB/farmacologia , Receptores ErbB/uso terapêutico , Proliferação de Células , ApoptoseRESUMO
Currently, research on the F. hodginsii asexual lineage primarily focuses on the screening of growth traits and the control of single fertilizer applications. The effects of the heterogeneity of soil nutrients on root growth and activity have not been studied in detail. Therefore, we propose forest management measures to improve the foraging ability of forest trees in conjunction with stand productivity. In this experiment, annual containerized seedlings of 10 free-pollinated F. hodginsii lines from a primary asexual seed orchard were used as test subjects, and three heterogeneous nutrient environments of nitrogen (N), phosphorus (P), and potassium (K) were constructed. In contrast, homogeneous nutrient environments were used as the control to carry out potting experiments, to study the growth of F. hodginsii lines and the differences in the activities of root enzymes under the three heterogeneous nutrient environments, and to carry out the comprehensive evaluation using the principal component and cluster analysis method. The results were as follows: (1) The seedling height of F. hodginsii family lines under a homogeneous nutrient environment was significantly higher than that of all heterogeneous nutrient environments; the diameter of the ground was the highest under N heterogeneous nutrient environment and significantly higher than that of all the other nutrient environments; the biomass of the root system was the highest under P heterogeneous nutrient environment, which was significantly higher than that of homogeneous nutrient environment and K heterogeneous nutrient environment. The catalase (CAT) activity of F. hodginsii roots was higher than that of homogeneous nutrients in all heterogeneous nutrient environments but not significant, and the superoxide dismutase (SOD) activity was slightly higher than that of K heterogeneous and homogeneous nutrient environments in N and P heterogeneous nutrient environments. SOD activity was slightly higher than that of K heterogeneous and homogeneous nutrient environments under N, and P. peroxidase (POD) activity in the F. hodginsii root system was the highest under the P heterogeneous nutrient environment, which was significantly higher than that of the other nutrient environments. Unlike the activities of the enzymes, the content of malondialdehyde (MDA) in the roots of F. hodginsii was higher in the heterogeneous environment than in all the other nutrient environments. (2) Under N and P heterogeneous nutrient environments, lines 552 and 590 had higher seedling height, ground diameter, and root enzyme activity, while root biomass was highest in line 544; and under K heterogeneous nutrient environments, line 591 had higher seedling height, ground diameter, and root enzyme activity while root biomass was highest in line 551. In contrast to the patterns of seedling height, accumulation of root biomass and activities of root enzymes, family No. 590 had the highest ground diameter of all the F. hodginsii families under the heterogeneous nutrient environments. Family No. 547 had the highest MDA content. In conclusion, it can be seen that N heterogeneous and homogeneous nutrient environments can significantly increase the seedling height and diameter of F. hodginsii compared with P and K heterogeneous nutrient environments, and N and P heterogeneous nutrient environments can also increase the root biomass, root enzyme activities and significantly reduce the MDA content of F. hodginsii. According to the principal component analysis and cluster analysis, it can be seen that among the 10 F. hodginsii family lines, family lines 590 and 552 have higher evaluation in growth, root biomass accumulation, and enzyme activity.
RESUMO
This study was designed to investigate the roles of autophagy in the attenuation of hepatic lipid accumulation after sleeve gastrectomy (SG). Thirty-two rats were divided into normal control, obesity group, sham group, and SG group. Then serum glucagon-like polypeptide-1 (GLP-1) and lipid accumulation were determined, followed by measuring the activity of autophagy based on immunohistochemistry (IHC) and Western blot analysis. Our data showed significant decrease in the lipid accumulation after SG compared with sham group. GLP-1 and autophagy showed significant increase in rats underwent SG compared with the sham group (P < 0.05). In vitro experiments were conducted to analyze the roles of GLP-1 in autophagy. We knock-downed the expression of Beclin-1 in HepG2, and then analyzed the expression of autophagy-related protein (i.e. LC3BII and LC3BI) and lipid droplet accumulation. In HepG2 cells, GLP-1 analog reduced lipid accumulation by activating autophagy through modulating the AMPK/mTOR signaling pathway. All these concluded that SG decreased hepatic lipid accumulation by inducing autophagy through modulating AMPK/mTOR pathway.
Assuntos
Proteínas Quinases Ativadas por AMP , Serina-Treonina Quinases TOR , Animais , Ratos , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Gastrectomia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Lipídeos , Serina-Treonina Quinases TOR/metabolismoRESUMO
Anti-PD1/PDL1 monotherapy has failed to acquire sufficiently ideal results in most solid tumors. Mesenchymal stem cells (MSCs) have been reported to exert therapeutic effects on some tumors, but the functions of MSCs in colorectal cancer (CRC) need further research. In this study, we aimed to investigate the therapeutic effect and the improvement of sensitivity of MSCs to anti-PD1 antibodies (αPD1) in CRC and to evaluate the possible mechanism. The relative distribution of immune cells in tumor microenvironment was examined after the mice were treated with MSC and/or αPD1. Our study revealed that MSC recruits CX3CR1high macrophages and promotes M1 polarization to inhibit tumor growth via highly secretion of CX3CL1.The combination of MSC and αPD1 was superior to monotherapy against CRC. MSC inhibits PD1 expression on CD8+ T cells by facilitating M1 macrophage polarization, which promotes the proliferation of CD8+ T cells, thus improving the sensitivity to αPD1 therapy in CRC. Additionally, the above therapeutic effect disappeared after inhibiting the secretion of CX3CL1 in MSC. Our MSC-based immunotherapeutic strategy simultaneously recruited and activated immune effector cells at the tumor site, suggesting that the combination of MSC and αPD1 could be a potential therapy for CRC.
RESUMO
In order to explore the evolution process of regional vegetable circulation efficiency and its influencing factors, this paper uses Super-SBM model considering unexpected output and GML index to calculate the vegetable circulation efficiency of 13 provinces (cities) in Central China and its surrounding areas from 2015 to 2019, then conducts spatial autocorrelation analysis on the vegetable circulation efficiency in this region through Moran index. Finally, SPDM model is constructed to explore the spatial effect of the influencing factors on the vegetable circulation efficiency in this region. The results show that (1) the vegetable circulation efficiency of most provinces (cities) in this region is low. (2) The Global Moran's I of the vegetable circulation efficiency in this region is positive, that is, the vegetable circulation efficiency in this region shows a certain degree of spatial agglomeration effect. (3) The level of scientific and technological innovation and the degree of government support have significant positive direct and indirect effects on the efficiency of vegetable circulation in the region, the quality of workers has significant positive indirect effects, and the level of economic development and industrial structure have significant negative indirect effects.
Assuntos
Carbono , Verduras , Humanos , Carbono/análise , Cidades , Desenvolvimento Econômico , Indústrias , Eficiência , China , Análise EspacialRESUMO
Introduction: Critical changes often occur in Fokienia hodginsii seedlings during the process of growth owing to differences in the surrounding environment. The most common differences are heterogeneous nutrient environments and competition from neighboring plants. Methods: In this study, we selected one-year-old, high-quality Fokienia hodginsii seedlings as experimental materials. Three planting patterns were established to simulate different competitive treatments, and seedlings were also exposed to three heterogeneous nutrient environments and a homogeneous nutrient environment (control) to determine their effect on the root morphology and structure of F. hodginsii seedlings. Results: Heterogeneous nutrient environments, compared with a homogeneous environment, significantly increased the dry matter accumulation and root morphology indexes of the root system of F. hodginsii, which proliferated in nutrient-rich patches, and the P heterogeneous environment had the most significant enhancement effect, with dry matter accumulation 70.2%, 7.0%, and 27.0% higher than that in homogeneous and N and K heterogeneous environments, respectively. Homogeneous environments significantly increased the specific root length and root area of the root system; the dry matter mass and morphological structure of the root system of F. hodginsii with a heterospecific neighbor were higher than those under conspecific neighbor and single-plant treatments, and the root area of the root system under the conspecific neighbor treatment was higher than that under the heterospecific neighbor treatment, by 20% and 23%, respectively. Moreover, the root system under heterospecific neighbor treatment had high sensitivity; the heterogeneous nutrient environment increased the mean diameter of the fine roots of the seedlings of F. hodginsii and the diameter of the vascular bundle, and the effect was most significant in the P heterogeneous environment, exceeding that in the N and K heterogeneous environments. The effect was most significant in the P heterogeneous environment, which increased fine root diameter by 20.5% and 10.3%, respectively, compared with the homogeneous environment; in contrast, the fine root vascular ratio was highest in the homogeneous environment, and most of the indicators of the fine root anatomical structure in the nutrient-rich patches were of greater values than those in the nutrient-poor patches in the different heterogeneous environments; competition promoted most of the indicators of the fine root anatomical structure of F. hodginsii seedlings. According a principal component analysis (PCA), the N, Pm and K heterogeneous environments with heterospecific neighbors and the P heterogeneous environment with a conspecific neighbor had higher evaluation in the calculation of eigenvalues of the PCA. Discussion: The root dry matter accumulation, root morphology, and anatomical structure of F. hodginsii seedlings in the heterogeneous nutrient environment were more developed than those in the homogeneous nutrient environment. The effect of the P heterogeneous environment was the most significant. The heterospecific neighbor treatment was more conducive to the expansion and development of root morphology of F. hodginsii seedlings than were the conspecific neighbor and single-plant treatments.
RESUMO
Continuously rising trends in diabetes render this disease spectrum an epidemic proportion worldwide. As the disease progresses, the pathological effects of diabetes may impair the normal function of several vital organs, eventually leading to increase the risk of other diabetic comorbidities with advanced fibrosis such as non-alcoholic fatty liver disease, diabetic cardiomyopathy, and diabetic kidney disease. Currently, lifestyle changes and drug therapies of hypoglycemic and lipid-lowering are effective in improving multi-organ function, but therapeutic efficacy is difficult to maintain due to poor compliance and drug reactions. Bariatric surgery, including sleeve gastrectomy and Roux-en-Y gastric bypass surgery, has shown better results in terms of prognosis for diabetes through long-term follow-up. Moreover, bariatric surgery has significant long-term benefits on the function of the heart, liver, kidneys, and other organs through mechanisms associated with reversal of tissue fibrosis. The aim of this review is to describe the impact of type 2 diabetes mellitus on hepatic, cardiac and renal fibrosis and to summarize the potential mechanisms by which bariatric surgery improves multiple organ function, particularly reversal of fibrosis.
RESUMO
Objective: To investigate the effects of sleeve gastrectomy (SG) on diabetes-related cognitive decline (DCD) in rats with diabetic mellitus (DM). Methods and methods: Forty Wistar rats were randomly divided into control (CON) group (n=10), diabetes mellitus (DM) group (n=10), sham operation (SHAM) group (n=10) and SG group (n=10). DM model was established by high-fat diet (HFD) combined with intraperitoneal injection of streptozocin (STZ). Behavioral evaluation was given using Morris water maze test and Y-maze. In addition, PET-CT, TUNEL assay, histological analysis, transmission electron microscopy (TEM), immunohistochemistry (IHC) and Western blot analysis were used to evaluate the alleviating effects and potential mechanisms of SG on DCD in DM rats. Results: Compared with the sham group, SG induced significant improvement in the metabolic indices such as blood glucose and body weight. Besides, it could attenuate the insulin resistance compared with SHAM group. In addition, SG could improve the cognitive function of DM rats, which were featured by significant decrease in the escape latency (P<0.05), and significant increase in the time in target quadrant and platform crossings (P<0.05) compared with the SHAM group. SG induced significant elevation in the spontaneous alternation compared with SHAM group (P<0.05). Moreover, SG could improve the arrangement and biosynthesis of hippocampus neuron. Moreover, SG triggered the inhibition of apoptosis of hippocampus neurons, and Western blot analysis showed SG induced significant increase in the ratios of Bcl-2/Bax and Caspase3/cleaved Caspase 3. TEM demonstrated SG could significantly improve the microstructure of hippocampus neurons compared with the SHAM group. Western blot and IHC confirmed the significant decrease in the phosphorylation of tau at Ser404 and Ser396 sites in the SG group. Furthermore, SG activated the PI3K signaling pathway by elevating the phosphorylation of PI3K and Akt and GSK3ß compared with the SHAM group. Conclusion: SG attenuated the DCD in DM rats, which may be related to the activation of PI3K signaling pathway.
Assuntos
Disfunção Cognitiva , Diabetes Mellitus Experimental , Ratos , Animais , Diabetes Mellitus Experimental/metabolismo , Fosfatidilinositol 3-Quinases , Ratos Wistar , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Gastrectomia/métodos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/prevenção & controleRESUMO
The stability of wheat production is closely related to national food security and agricultural sustainable development, and it has been a major policy concern for China. By analyzing the spatiotemporal factors and causes of wheat production, we can grasp the spatiotemporal distribution law of wheat production to rationally allocate agricultural resources. To this end, this study first conducted a quantitative analysis of the yield differentiation patterns in Huang-Huai-Hai (HHH) wheat based on the 2010-2020 wheat agricultural data, comprehensively using the Theil index and exploratory spatial data analysis. Second, to eliminate the spatial heterogeneity and multicollinearity of the modeling variables, a local model of SCA-GWR combining Spearman correlation analysis (SCA) and geographically weighted regression (GWR) was established. Compared with the traditional global regression model, the superiority and applicability of the SCA-GWR model are proved, and it is a simple and effective new method to detect spatial data nonstationarity. Finally, the factors influencing wheat production in the HHH region were detected based on the SCA-GWR local model, and relevant policy recommendations were put forward. The results show that: (1) The yield difference in different farming areas gradually narrowed, and the wheat production had a significant High-High aggregation trend. The center of gravity for wheat production lies in the southwest of the HHH region. (2) Wheat production still has a strong dependence on irrigation and fertilizer. Effective irrigated areas and temperature are the main driving forces for its production. The inhibitory effect of the proportion of nonagricultural employment on wheat production gradually weakened. Radiation and rainfall were only significantly positively correlated with wheat production in the central and southern HHH region. In response to the findings of the study, corresponding policy recommendations are made in terms of optimizing the allocation of resources, increasing investment in agricultural infrastructure, and vigorously researching and developing agricultural science and technology, and the results of the study can provide a basis for decision-making and management by relevant departments.
RESUMO
The ability to form pristine interfaces after etching and regrowth of GaN is a prerequisite for epitaxial selective area doping, which in turn is needed for the formation of lateral PN junctions and advanced device architectures. In this work, we report the electrical properties of etched-and-regrown GaN PN diodes using an in situ Cl-based precursor, tertiary butylchloride (TBCl). We demonstrated a regrowth diode with I-V characteristics approaching that from a continuously grown reference diode. The sources of unintentional contamination from the silicon (Si) impurity and the mediating effect of Si during the TBCl etching are also investigated in this study. This work points to the potential of in situ TBCl etching toward the realization of GaN lateral PN junctions.