RESUMO
Despite the critical role of sintering phenomena in constraining the long-term durability of nanosized particles, a clear understanding of nanoparticle sintering has remained elusive due to the challenges in atomically tracking the neck initiation and discerning different mechanisms. Through the integration of in situ transmission electron microscopy and atomistic modeling, this study uncovers the atomic dynamics governing the neck initiation of Pt-Fe nanoparticles via a surface self-diffusion process, allowing for coalescence without significant particle movement. Real-time imaging reveals that thermally activated surface morphology changes in individual nanoparticles induce significant surface self-diffusion. The kinetic entrapment of self-diffusing atoms in the gaps between closely spaced nanoparticles leads to the nucleation and growth of atomic layers for neck formation. This surface self-diffusion-driven sintering process is activated at a relatively lower temperature compared to the classic Ostwald ripening and particle migration and coalescence processes. The fundamental insights have practical implications for manipulating the morphology, size distribution, and stability of nanostructures by leveraging surface self-diffusion processes.
RESUMO
Liquid metal batteries have received considerable attention owing to their excellent properties. However, an electrolyte with low melting temperature is required to decrease operating temperature for the safety of liquid metal batteries and for saving energy. For revealing the mechanism of low liquefaction temperature, an empirical electron theory of solid molecules was used to study the thermal properties of pure lithium halides and their ternary-phase systems systematically. The theoretical bond lengths, melting points, liquefaction temperatures and mixed energies of pure lithium halides and their ternary phases match the experimental values well. The mechanism of liquefaction temperature for ternary lithium halides depends on their valence electron structures. The liquefaction temperature can be stabilized on a liquidus line or curve through the modulation of the constant number of covalent electrons (nc) and lattice electrons (nl). The liquefaction temperatures on various liquidus lines and curves are positively related to the linear density of valence electron pairs on the strong Li-X bond, bonding factor, and number of valence electrons in the s orbital but are negatively related to the number of valence electrons in the p orbital. With an increase in the linear density of the valence electron pair number and bonding factor, bond strength is enhanced, which increases the resistance of the strong Li-X bond against the break force induced by thermal phonon vibrations, and more thermal phonons with high vibrating energy are required for breaking the strongest Li-X bond at a higher temperature; therefore, the liquefaction temperature increases.
RESUMO
Fecal incontinence is a common symptom among patients with rectal prolapse. Pudendal nerve terminal motor latency (PNTML) testing can serve as a reference indicator for predicting the outcomes of rectal prolapse surgery, thereby assisting surgeons in formulating more appropriate surgical plans. The direct correlation between preoperative PNTML testing results and postoperative fecal incontinence in patients with rectal prolapse remains a contentious issue, necessitating further clarification. Thus, we analyze the existing publications from both clinical and statistical perspectives to comprehensively evaluate the accuracy of preoperative PNTML testing in rectal prolapse and provide some feasible statistical solutions.
RESUMO
The traveling salesman problem (TSP) is a well-known combinatorial optimization problem (COP) with broad real-world applications. Recently, neural networks (NNs) have gained popularity in this research area because as shown in the literature, they provide strong heuristic solutions to TSPs. Compared to autoregressive neural approaches, nonautoregressive (NAR) networks exploit the inference parallelism to elevate inference speed but suffer from comparatively low solution quality. In this article, we propose a novel NAR model named, which incorporates a specially designed architecture and an enhanced reinforcement learning (RL) strategy. To the best of our knowledge, is the first TSP solver that successfully combines RL and NAR networks. The key lies in the incorporation of NAR network output decoding into the training process. efficiently represents TSP-encoded information as rewards and seamlessly integrates it into RL strategies, while maintaining consistent TSP sequence constraints during both training and testing phases. Experimental results on both synthetic and real-world TSPs demonstrate that outperforms five state-of-the-art (SOTA) models in terms of solution quality, inference speed, and generalization to unseen scenarios.
RESUMO
2,2',4,4'-tetrabromodiphenyl ether (BDE-47) is a widely used brominated flame retardant belonging to persistent organic pollutants (POPs). After being released into the marine environment, BDE-47 can cause a range of toxic effects on marine organisms through bioaccumulation, biomagnification, and intergenerational transmission. These effects include lethality, impaired motility, photosynthetic toxicity, immune damage, liver toxicity, developmental impairments, and reproductive toxicity. This article reviews the latest research progress on the toxic effects and molecular mechanisms of BDE-47 mentioned above. The primary mechanisms underlying its toxicity include oxidative stress, DNA damage, cellular apoptosis, impaired metabolism, and activation of the MAPK signaling cascade.
RESUMO
INTRODUCTION: Mycophenolate mofetil (MMF) is widely used off-label in patients with immunoglobulin A nephropathy (IgAN), although the literature does not consistently agree on its efficacy and safety. METHODS: We systematically searched PubMed, Embase, CENTRAL, CNKI, VIP, Wanfang Data, and SinoMed from their inception to August 2023. We included randomized controlled trials that enrolled patients of IgAN who received MMF treatment and compared effects with placebo or as an add-on therapy to usual care. Literature screening, risk of bias assessment, and data extraction were independently conducted in duplicate. Fixed-effects or random-effects meta-analyses were performed for pooling data where eligible. The primary outcomes were the composite kidney outcomes of major adverse kidney events (MAKDE) defined as doubling of serum creatinine, end-stage renal disease (ESRD), or death from a kidney disease-related or cardiovascular cause. RESULTS: Of 13 studies identified, 918 participants (463 [50.4%] treated with MMF) with IgAN were included in the analysis. MMF treatment in IgAN was associated with decreasing the occurrence of MAKDE (RR, 0.32; 95%CI, 0.13 to 0.77), reducing proteinuria (RR, 1.41; 95%CI, 1.22 to 1.64), and lessening the probability of doubling blood creatinine (RR, 0.32, 95% CI, 0.14 to 0.72). No significant differences were detected in the incidence of ESRD (RR: 0.87, 95% CI: 0.38 to 2.03), or progression of chronic kidney disease (RR, 1.01; 95%CI, 0.22 to 4.57). Patients receiving MMF had a higher risk of infection (RR, 2.20; 95%CI, 1.21 to 4.00). CONCLUSION: MMF administration in IgAN indicates promising in decreasing the occurrence of MAKDE, reducing proteinuria level, and lessening the probability of doubling blood creatinine, but also comes with the risk of infection. These findings tend to be introduced to non-Caucasian population. The long-term favorable effects that MMF improved kidney outcomes still needs need further cross-regional and cross-ethnical verification.
RESUMO
The Yangtze Finless Porpoise (YFP) is one of the 13 global flagship species identified by the World Wildlife Fund and is classified as "Critically Endangered." It is also the only extant aquatic mammal in the Yangtze River. In this study, 44 sampling points were deployed across the middle and lower reaches of the Yangtze River, with vertical sampling sections established in four key areas. Using environmental DNA (eDNA) and species distribution model(SDM), we explored the spatiotemporal distribution of YFPs and predicted their potential suitable habitats. The results indicate that the YFP has a relatively wide distribution during the flood season but exhibits clustering behavior during the dry season, showing a patchy distribution and a migratory trend from the midstream to downstream of the main channel. Predictions using the MAXENT model reveal varying trends in suitable habitat under different scenarios. Overall, YFP's potential habitat is expected to expand by 2050, but due to rising temperatures, it will contract by 2070. Elevation (dem, 65.4%), human footprint index (hfp, 8.8%), and isothermality (bio3, 8%) are key factors influencing habitat suitability. These findings demonstrate that eDNA is an effective tool for monitoring large aquatic organisms and provide scientific evidence for the conservation of the YFP.
RESUMO
BACKGROUND: Familial hypercholesterolemia (FH) is a prevalent genetic disorder with global implications for severe cardiovascular diseases. Motivated by the growing recognition of the need for early diagnosis and treatment of FH to mitigate its severe consequences, alongside the gaps in understanding the economic implications and equity impacts of FH screening, this study aims to synthesize the economic evidence on the cost-effectiveness of FH screening and to analyze the impact of FH screening on health inequality. METHODS: We conducted a systematic review on the economic evaluations of FH screening and extracted information from the included studies using a pre-determined form for evidence synthesis. We synthesized the cost-effectiveness components involving the calculation of synthesized incremental cost-effectiveness ratios (ICERs) and net health benefit (NHB) of different FH screening strategies. Additionally, we applied an aggregate distributional cost-effectiveness analysis (DCEA) to assess the impact of FH screening on health inequality. RESULTS: Among the 19 studies included, over half utilized Markov models, and 84% concluded that FH screening was potentially cost-effective. Based on the synthesized evidence, cascade screening was likely to be cost-effective, with an ICER of $49,630 per quality-adjusted life year (QALY). The ICER for universal screening was $20,860 per QALY as per evidence synthesis. The aggregate DCEA for six eligible studies presented that the incremental equally distributed equivalent health (EDEH) exceeded the NHB. The difference between EDEH and NHB across the six studies were 325, 137, 556, 36, 50, and 31 QALYs, respectively, with an average positive difference of 189 QALYs. CONCLUSIONS: Our research offered valuable insights into the economic evaluations of FH screening strategies, highlighting significant heterogeneity in methods and outcomes across different contexts. Most studies indicated that FH screening is cost-effective and contributes to improving overall population health while potentially reducing health inequality. These findings offer implications that policies should promote the implementation of FH screening programs, particularly among younger population. Optimizing screening strategies based on economic evidence can help identify the most effective measures for improving health outcomes and maximizing cost-effectiveness.
Assuntos
Análise Custo-Benefício , Hiperlipoproteinemia Tipo II , Programas de Rastreamento , Humanos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/economia , Programas de Rastreamento/economia , Programas de Rastreamento/métodos , Anos de Vida Ajustados por Qualidade de VidaRESUMO
In dietary assessment using a single-view food image, an object of known size, such as a checkerboard, is often placed manually in the camera's view as a scale reference to estimate food volume. This traditional scale reference is inconvenient to use because of the manual placement requirement. Consequently, utensils, such as plates and bowls, have been suggested as alternative references. Although these references do not need a manual placement procedure, there is a unique challenge when a dining bowl is used as a reference. Unlike a dining plate, whose shallow shape does not usually block the view of the food, a dining bowl does obscure the food view, and its shape may not be fully observable from the single-view food image. As a result, significant errors may occur in food volume estimation due to the unknown shape of the bowl. To address this challenge, we present a novel method to premeasure both the size and shape of the empty bowl before it is used in a dietary assessment study. In our method, an image is taken with a labeled paper ruler adhered to the interior surface of the bowl, a mathematical model is developed to describe its shape and size, and then an optimization method is used to determine the bowl parameters based on the locations of observed ruler makers from the bowl image. Experimental studies were performed using both simulated and actual bowls to assess the reliability and accuracy of our bowl measurement method.
Assuntos
Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Modelos Teóricos , Dieta , AlimentosRESUMO
The DEAD-box RNA helicase DDX3X is a multifunctional protein involved in RNA metabolism and stress responses. In this study, we investigated the role of RG/RGG motifs in the dynamic process of liquid-liquid phase separation (LLPS) of DDX3X using cell-free assays and explored their potential link to cancer development through bioinformatic analysis. Our results demonstrate that the number, location, and composition of RG/RGG motifs significantly influence the ability of DDX3X to undergo phase separation and form self-aggregates. Mutational analysis revealed that the spacing between RG/RGG motifs and the number of glycine residues within each motif are critical factors in determining the extent of phase separation. Furthermore, we found that DDX3X is co-expressed with the stress granule protein G3BP1 in several cancer types and can undergo co-phase separation with G3BP1 in a cell-free system, suggesting a potential functional interaction between these proteins in phase-separated structures. DDX3X and G3BP1 may interact through their RG/RGG domains and subsequently exert important cellular functions under stress situation. Collectively, our findings provide novel insights into the role of RG/RGG motifs in modulating DDX3X phase separation and their potential contribution to cancer pathogenesis.
Assuntos
Motivos de Aminoácidos , RNA Helicases DEAD-box , Neoplasias , Proteínas com Motivo de Reconhecimento de RNA , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , Humanos , Neoplasias/metabolismo , Neoplasias/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/química , RNA Helicases/metabolismo , RNA Helicases/genética , RNA Helicases/química , Sistema Livre de Células , Ligação Proteica , Separação de Fases , Proteínas de Ligação a Poli-ADP-Ribose , DNA HelicasesRESUMO
Glucose and lipid metabolism dysregulation in skeletal muscle contributes to the development of metabolic disorders. The efficacy of fucoxanthin in alleviating lipid metabolic disorders in skeletal muscle remains poorly understood. In this study, we systematically investigated the impact of fucoxanthin on mitigating lipid deposition and insulin resistance in skeletal muscle employing palmitic acid-induced lipid deposition in C2C12 cells and ob/ob mice. Fucoxanthin significantly alleviated PA-induced skeletal muscle lipid deposition and insulin resistance. In addition, fucoxanthin prominently upregulated the expression of lipid metabolism-related genes (Pparα and Cpt-1), promoting fatty acid ß-oxidation metabolism. Additionally, fucoxanthin significantly increased the expression of Pgc-1α and Tfam, elevated the mtDNA/nDNA ratio, and reduced ROS levels. Further, we identified pyruvate kinase muscle isozyme 1 (PKM1) as a high-affinity protein for fucoxanthin by drug affinity-responsive target stability and LC-MS and confirmed their robust interaction by CETSA, microscale thermophoresis, and circular dichroism. Supplementation with pyruvate, the product of PKM1, significantly attenuated the beneficial effects of fucoxanthin on lipid deposition and insulin resistance. Mechanistically, fucoxanthin reduced glucose glycolysis rate and enhanced mitochondrial biosynthesis and fatty acid ß-oxidation through inhibiting PKM1 activity, thereby alleviating lipid metabolic stress. These findings present a novel clinical strategy for treating metabolic diseases using fucoxanthin.
Assuntos
Resistência à Insulina , Metabolismo dos Lipídeos , Músculo Esquelético , Piruvato Quinase , Xantofilas , Animais , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Xantofilas/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Piruvato Quinase/metabolismo , Piruvato Quinase/genética , Masculino , Humanos , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversosRESUMO
The effect of reinforcing and reducing techniques of moxibustion depends on types of moxibustion, operation methods and characteristics of acupoints. According to the ups and downs of pathogenic factors and healthy qi during the occurrence and development of prostate cancer, three stages are divided, namely, the stage of initial accumulation of cancer toxicity, the stage of the deficiency of healthy qi and toxin retention, and the stage of yang deficiency and cold stagnation. In the stage of initial accumulation of cancer toxicity, zangfu function is impaired and the dampness, heat and stasis toxin are accumulated in the body; due to which, the reducing technique of moxibustion should be dominant and the healthy qi be supported in combination. In treatment, the wheat-grain sized cone moxibustion, suppurative moxibustion and garlic-isolated moxibustion are applicable. The reducing purpose of moxibustion is obtained by delivering an appropriate increased number of moxa cones, large dosage and strong stimulation at acupoints. In the stage of the deficiency of healthy qi and toxin retention, qi movement is weakened and cancer toxin consumes yin; the reinforcing healthy qi and removing pathogenic factors should be operated simultaneously. In treatment, mild moxibustion and suppurative moxibustion can be used. The reduced number of moxa cones, moderate dosage of moxibustion and mild stimulation at acupoints should be considered to gently adjust the conditions of deficiency and excess. In the stage of yang deficiency and cold stagnation, spleen and kidney yang is deficient, and the meridians are blocked by cold and damp pathogens. In treatment, the reinforcing technique of moxibustion should be used specially and eliminating pathogenic factors be combined. Monkshood cake-insulated moxibustion, salt-insulated moxibustion and wheat-grain sized cone moxibustion can be adopted. The less number of moxa cones, small dosage and appropriately increased frequency of treatment should be considered to produce the gentle and sustained stimulation at acupoints so as to excite the healthy qi and promote the transformation of qi and blood.
Assuntos
Moxibustão , Neoplasias da Próstata , Humanos , Moxibustão/métodos , Masculino , Neoplasias da Próstata/terapia , Pontos de AcupunturaRESUMO
Electrical isolation devices are essential components for safeguarding the reliability of electronic systems under harsh conditions. Digital isolators are widely used in low-power circuits due to their high immunity to disturbances. In this paper, a capacitive digital isolator for high-efficiency power supply scenarios is proposed with a high common-mode transient immunity (CMTI) and high data transmission rate. The on-off keying (OOK) modulation technique is used to ensure a high speed and accurate signal transmission. A fully integrated high-voltage level-shift driver with an ns-scale delay is proposed for increasing the drive capacity. Post-simulation results in Cadence IC 6.1.7 with the standard 0.18 µm CMOS process show that the proposed architecture achieves a 25 Mbps data transmission rate and 15 ns typical propagation delay with output peak currents of 2 A/4 A, respectively. Meanwhile, a CMTI of more than 150 kV/µs is realized.
RESUMO
Colorectal cancer (CRC) is the third most common cancer worldwide and the second most common cause of cancer death. Nanotherapies are able to selectively target the delivery of cancer therapeutics, thus improving overall antitumor efficiency and reducing conventional chemotherapy side effects. Mesoporous silica nanoparticles (MSNs) have attracted the attention of many researchers due to their remarkable advantages and biosafety. We offer insights into the recent advances of MSNs in CRC treatment and their potential clinical application value.
RESUMO
Tobacco (Nicotiana tabacum L.) is one of the most widely cultivated industrial crops worldwide. From April to July 2023, about 40% of tobacco seedlings in the greenhouse exhibited irregular taupe lesions in Zhengzhou, Henan Province, China. At an early stage of the lesion development, light grey spots with the diameter of 1-2 mm were observed, these spots gradually expanded and connected into large irregular lesions causing leaf wrinkling or withered. A total of 12 infected leaf tissues were sterilized with 75% ethanol for 45 s, rinsed three times in sterilized water and then plated on potato dextrose agar (PDA) medium for 10 days at 28°C in darkness. Seven fungal colonies that show the similar appearance were isolated and three of them (MB-1, MB-2 and MB-3) were used for subsequent identification. Colonies of these strains on PDA with loose mycelium and orange-red pigment on the underside, white aerial in the center and light yellow hyphae near the periphery, formed in the shape of a concentric ring pattern. Ascomata appeared from the 14th day, were black, spherical or ellipsoid with walls of textura angularis, and size was 53.8-101.1 µm × 50.3-104.3 µm (n=30). Terminal hairs were brown and straight, gradually tapering toward the tips. Asci clavate or fusiform, spore bearing part 16.2-29.2 × 7.3-11.4 µm (n=21), with 8 irregularly arranged ascospores, evanescent. Ascospores are brown at maturity, biapiculate, navicular or fusiform shapes with size of 8.7-12.8 µm × 4.8-6.9 µm (n=100), and more or less inaequilateral. Single spore strains derived from these strains exhibited the morphological features consistent with the original strains. The morphological characteristics of the fungus were consistent with the description of Arcopilus aureus (Chivers) X.W. Wang & Samson (= Chaetomium aureum Chivers) (Lee et al. 2019). Furthermore, the sequences of RPB2 region were amplified from these strains and the result sequences (GenBank accession no. OR513105-OR513108) all showed a 100.00% identity with A. aureus strain CBS 538.73 (GenBank accession no. KX976807.1). It was reported that the RPB2 gene was efficient in discriminating Arcopilus species (Tavares et al. 2022), thus a maximum likelihood (ML) phylogenetic tree based on the RPB2 gene sequences were constructed using MEGA 7.0 with 1000 replications of bootstrapping (Kumar et al. 2016), which revealed that these strains formed a well-supported clade with A. aureus strains of (CBS 153.52 and CBS538.73) (Wang et al. 2022). Pathogenicity analysis were performed on healthy flue-cured tobacco seedlings leaves (cv Y85) by using mycelial agar plugs (5 mm in diameter) and spore suspension (1×106 spores/mL), and the PDA plugs and sterile water were used for control group, respectively. Tobacco seedlings were incubated in a 25°C and 70% RH growth chamber. After seven days, the leaves showed obvious symptoms, with taupe lesions and yellow halos on the periphery, whereas no symptoms were found on the control leaves. The A. aureu was then reisolated from inoculated diseased leaves. Previously, A. aureus has been only reported to cause leaf black disease on Pseudostellaria heterophylla in China (Yuan et al. 2021). To our knowledge, this is the first reported of A. aureus causing tobacco leaf grey spot worldwide. Arcopilus aureus has been reported as a plant biocontrol fungus (Wang et al. 2013). However, due to the potential serious damage in tobacco seedlings caused by this fungus, the use of A. aureus as a plant biocontrol agent needs to be given more attention, and disease control measures of this pathogen should be developed.
RESUMO
INTRODUCTION: The therapeutic potential of fucoidan (FUC), a natural polysaccharide, in metabolic disorders is recognized, yet its underlying mechanisms remain unclear. METHODS: We conducted investigations into the therapeutic mechanisms of FUC sourced from Sargassum fulvellum concerning metabolic disorders induced by a high-sucrose diet (HSD), employing Drosophila melanogaster and mice models. Drosophila larvae were subjected to HSD exposure to monitor growth inhibition, reduced pupation, and developmental delays. Additionally, we examined the impact of FUC on growth- and development-related hormones in Drosophila. Furthermore, we assessed the modulation of larval intestinal homeostasis by FUC, focusing on the regulation of Notch signaling. In mice, we evaluated the effects of FUC on HSD-induced impairments in intestinal epithelial barrier integrity and gut hormone secretion. RESULTS: FUC supplementation significantly enhanced pupal weight in Drosophila larvae and effectively countered HSD-induced elevation of glucose and triglyceride levels. It notably influenced the expression of growth- and development-related hormones, particularly augmenting insulin-like peptides production while mitigating larval growth retardation. FUC also modulated larval intestinal homeostasis by negatively regulating Notch signaling, thereby protecting against HSD-induced metabolic stress. In mice, FUC ameliorated HSD-induced impairments in ileum epithelial barrier integrity and gut hormone secretion. CONCLUSIONS: Our findings demonstrate the multifaceted therapeutic effects of FUC in mitigating metabolic disorders and maintaining intestinal health. FUC holds promise as a therapeutic agent, with its effects attributed partly to the sulfate group and its ability to regulate Notch signaling, emphasizing its potential for addressing metabolic disorders.
RESUMO
Phosphates play a crucial role in drug design, but their negative charge and high polarity make the transmembrane transport of phosphate species challenging. This leads to poor bioavailability of phosphate drugs. Combretastatin-A4 phosphate (CA4P) is such an anticancer monoester phosphate compound, but its absorption and clinical applicability are greatly limited. Therefore, developing carrier systems to effectively deliver phosphate drugs like CA4P is essential. Anion receptors have been found to facilitate the transmembrane transport of anions through hydrogen bonding. In this study, we developed a tripodal hexaurea anion receptor (L1) capable of binding anionic CA4P through hydrogen bonding, with a binding constant larger than 104 M-1 in a DMSO/water mixed solvent. L1 demonstrated superior binding ability compared to other common anions, and exhibited negligible cell cytotoxicity, making it a promising candidate for future use as a carrier for drug delivery.
RESUMO
All-solid-state ionic conductive elastomers (ASSICEs) are emerging as a promising alternative to hydrogels and ionogels in flexible electronics. Nevertheless, the synthesis of ASSICEs with concomitant mechanical robustness, superior ionic conductivity, and cost-effective recyclability poses a formidable challenge, primarily attributed to the inherent contradiction between mechanical strength and ionic conductivity. Herein, we present a collaborative design of high-entropy topological network and multivalent ion-dipole interaction for ASSICEs, and successfully mitigate the contradiction between mechanical robustness and ionic conductivity. Benefiting from the synergistic effect of this design, the coordination, de-coordination, and intrachain transfer of Li+ are effectively boomed. The resultant ASSICEs display exceptional mechanical robustness (breaking strength: 7.45 MPa, fracture elongation: 2621%, toughness: 107.19 MJ m-3) and impressive ionic conductivity (1.15 × 10-2 S m-1 at 25 °C). Furthermore, these ASSICEs exhibit excellent environmental stability (fracture elongation exceeding 1400% at 50 °C or -60 °C) and recyclability. Significantly, the application of these ASSICEs in a strain sensor highlights their potential in various fields, including human-interface communication, aerospace vacuum measurement, and medical balloon monitoring.
RESUMO
Background: Cellular senescence is a hallmark of aging and has been implicated in Alzheimer's disease (AD) pathogenesis. Cholesterol accumulation drives cellular senescence; however, the underlying mechanisms are unclear. ATP-binding cassette transporter A1 (ABCA1) plays an important role in cholesterol homeostasis. ABCA1 expression and its trafficking is afiltered in APOE4 and AD cellular and mouse models. However, whether ABCA1 trafficking is involved in cellular senescence in APOE4 and AD remains unknown. Methods: We examined the association between cellular senescence and ABCA1 expression in human postmortem brain samples using transcriptomic, histological, and biochemical analyses. An unbiased proteomic screening was performed to identify targets that mediate cellular ABCA1 trafficking. APOE4-TR mice, immortalized, primary and induced pluripotent stem cell (iPSC) models were used to examine the cholesterol-ABCA1-senescence pathways. Results: Bulk and single nuclei transcriptomic profiling of the human dorsolateral prefrontal cortex from the Religious Order Study/Memory Aging Project (ROSMAP) revealed upregulation of cellular senescence transcriptome signatures in AD, which was strongly correlated with ABCA1 expression. Immunofluorescence and immunoblotting analyses confirmed increased ABCA1 expression in AD brain tissues, which was associated with lipofuscin-stained lipids and mTOR phosphorylation. Using discovery proteomics, caveolin-1, a sensor of cellular cholesterol accumulation, was identified to promote ABCA1 endolysosomal trafficking. Greater caveolin-1 expression was found in both APOE4-TR mouse models and AD human brains. Cholesterol induced mTORC1 activation was regulated by ABCA1 expression or its lysosomal trapping. Reducing cholesterol by cyclodextrin in APOE4-TR mice reduced ABCA1 lysosome trapping and increased ABCA1 recycling to efflux cholesterol to HDL particles, reducing mTORC1 activation and senescence-associated neuroinflammation. In human iPSC-derived astrocytes, the reduction of cholesterol by cyclodextrin attenuated inflammatory responses. Conclusions: Cholesterol accumulation in APOE4 and AD induced caveolin-1 expression, which traps ABCA1 in lysosomes to activate mTORC1 pathways and induce cellular senescence. This study provided novel insights into how cholesterol accumulation in APOE4 and AD accelerates senescence.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium officinale Kimura et Migo, known as "Tiepi Shihu" in traditional Chinese medicine, boasts an extensive history of medicinal use documented in the Chinese Pharmacopoeia. "Shen Nong Ben Cao Jing" records D. officinale as a superior herbal medicine for fortifying "Yin" and invigorating the five viscera. Erianin, a benzidine compound, emerges as a prominent active constituent derived from D. officinale, with the pharmacological efficacy of D. officinale closely linked to the anti-inflammatory properties of erianin. AIM OF THE STUDY: Acute lung injury (ALI) is a substantial threat to global public health, while P-selectin stands out as a promising novel target for treating acute inflammatory conditions. This investigation aims to explore the therapeutic potential of erianin in ALI treatment and elucidate the underlying mechanisms. EXPERIMENTAL DESIGN: The effectiveness of erianin in conferring protection against ALI was investigated through comprehensive histopathological and biochemical analyses of lung tissues and bronchoalveolar lavage fluid (BALF) in an in vivo model of LPS-induced ALI in mice. The impact of erianin on fMLP-induced neutrophil chemotaxis was quantitatively assessed using the Transwell and Zigmond chamber, respectively. To determine the therapeutic target of erianin and elucidate their binding capability, a series of sophisticated assays were employed, including drug affinity responsive target stability (DARTS) assay, cellular thermal shift assay (CETSA), and molecular docking analyses. RESULTS: Erianin demonstrated a significant alleviation of LPS-induced acute lung injury, characterized by reduced total cell and neutrophil counts and diminished total protein contents in BALF. Moreover, erianin exhibited a capacity to decrease proinflammatory cytokine production in both lung tissues and BALF. Notably, erianin effectively suppressed the activation of NF-κB signaling in the lung tissues of LPS- challenged mice; however, it did not exhibit in vitro inhibitory effects on inflammation in LPS-induced human pulmonary microvascular endothelial cells (HPMECs). Additionally, erianin blocked the adhesion and rolling of neutrophils on HPMECs. While erianin did not influence endothelial P-selectin expression or cytomembrane translocation, it significantly reduced the ligand affinity between P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1). CONCLUSIONS: Erianin inhibits P-selectin-mediated neutrophil adhesion to activated endothelium, thereby alleviating ALI. The present study highlights the potential of erianin as a promising lead for ALI treatment.