Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Lipids Health Dis ; 23(1): 219, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030624

RESUMO

BACKGROUND: The Triglyceride-glucose (TyG) index is a marker of insulin resistance, but its role in sarcopenia is controversial. The purpose of this study was to investigate the association of the TyG index with sarcopenia. METHODS: 4030 participants aged 20 years and above were selected from National Health and Nutrition Examination Survey for cross sectional study. Weighted logistic regression model was used to estimate the association between TyG index and sarcopenia. Threshold effect analysis and restricted cubic spline were employed to describe nonlinear link, with interaction tests and subgroup analyses performed. RESULTS: It was found in the fully adjusted model that the TyG index was positively associated with sarcopenia (per 1-unit increase in the TyG index: OR = 1.31, 95%CI: 1.07, 1.60). This association was further highlighted in groups characterized by the absence of MetS or diabetes, as well as the absence of vigorous or moderate work activity. Furthermore, analysis of the curve fitting and threshold effects indicated a nonlinear relationship, which exhibited a turning point at 9.14. CONCLUSION: The study results indicated that the TyG index was positively associated with sarcopenia. Enhancing the management of insulin resistance could help reduce the risk of developing sarcopenia.


Assuntos
Glicemia , Resistência à Insulina , Inquéritos Nutricionais , Sarcopenia , Triglicerídeos , Humanos , Sarcopenia/sangue , Sarcopenia/epidemiologia , Triglicerídeos/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Glicemia/metabolismo , Adulto , Estudos Transversais , Idoso , Modelos Logísticos
2.
bioRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38562800

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) subsists in a nutrient-deregulated microenvironment, making it particularly susceptible to treatments that interfere with cancer metabolism12. For example, PDAC utilizes and is dependent on high levels of autophagy and other lysosomal processes3-5. Although targeting these pathways has shown potential in preclinical studies, progress has been hampered by the challenge of identifying and characterizing favorable targets for drug development6. Here, we characterize PIKfyve, a lipid kinase integral to lysosomal functioning7, as a novel and targetable vulnerability in PDAC. In human patient and murine PDAC samples, we discovered that PIKFYVE is overexpressed in PDAC cells compared to adjacent normal cells. Employing a genetically engineered mouse model, we established the essential role of PIKfyve in PDAC progression. Further, through comprehensive metabolic analyses, we found that PIKfyve inhibition obligated PDAC to upregulate de novo lipid synthesis, a relationship previously undescribed. PIKfyve inhibition triggered a distinct lipogenic gene expression and metabolic program, creating a dependency on de novo lipid metabolism pathways, by upregulating genes such as FASN and ACACA. In PDAC, the KRAS-MAPK signaling pathway is a primary driver of de novo lipid synthesis, specifically enhancing FASN and ACACA levels. Accordingly, the simultaneous targeting of PIKfyve and KRAS-MAPK resulted in the elimination of tumor burden in a syngeneic orthotopic model and tumor regression in a xenograft model of PDAC. Taken together, these studies suggest that disrupting lipid metabolism through PIKfyve inhibition induces synthetic lethality in conjunction with KRAS-MAPK-directed therapies for PDAC.

3.
J Med Chem ; 67(9): 6938-6951, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38687638

RESUMO

Nuclear receptor-binding SET domain-containing 2 (NSD2), a methyltransferase that primarily installs the dimethyl mark on lysine 36 of histone 3 (H3K36me2), has been recognized as a promising therapeutic target against cancer. However, existing NSD2 inhibitors suffer from low activity or inferior selectivity, and none of them can simultaneously remove the methyltransferase activity and chromatin binding function of NSD2. Herein we report the discovery of a novel NSD2 degrader LLC0424 by leveraging the proteolysis-targeting chimera technology. LLC0424 potently degraded NSD2 protein with a DC50 value of 20 nM and a Dmax value of 96% in acute lymphoblastic leukemia (ALL) RPMI-8402 cells. Mechanistic studies revealed LLC0424 to selectively induce NSD2 degradation in a cereblon- and proteasome-dependent fashion. LLC0424 also caused continuous downregulation of H3K36me2 and growth inhibition of ALL cell lines with NSD2 mutation. Importantly, intravenous or intraperitoneal injection of LLC0424 showed potent NSD2 degradation in vivo.


Assuntos
Histona-Lisina N-Metiltransferase , Proteólise , Humanos , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Proteólise/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Camundongos , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Descoberta de Drogas , Complexo de Endopeptidases do Proteassoma/metabolismo , Relação Estrutura-Atividade , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Histonas/metabolismo , Proliferação de Células/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...