Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Cardiovasc Res ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850163

RESUMO

AIMS: The widespread use of immune checkpoint inhibitors (ICIs) has demonstrated significant survival benefits for cancer patients and also carry the risk of immune-related adverse events (irAEs). ICIs-associated myocarditis is a rare and serious adverse event with a high mortality rate. Here, we explored the mechanism underlying ICIs-associated myocarditis. METHODS AND RESULTS: Using the peripheral blood of patients with ICIs therapy and ICIs treated mice with transplanted tumors, we dissect the immune cell subsets and inflammatory factors associated with myocarditis. Compared to the control group, patients with myocarditis after ICIs therapy showed an increase in NK cells and myeloid cells in peripheral blood, while T cells significantly decreased. Among T cells, there was an imbalance of CD4/CD8 ratio in the peripheral blood of myocarditis patients, with a significant decrease in central memory CD4+ T (CD4+ TCM) cells. RNA-Seq revealed that CD4+ TCM cells in myocarditis patients were an immunosuppressive cell subset, which highly express the immunosuppressive factor IL4I1. To elucidate the potential mechanism of the decrease in CD4+ TCM cells, protein array was performed and revealed that several inflammatory factors gradually increased with the severity of myocarditis in the myocarditis group, such as IL-1B/CXCL13/CXCL9, while the myocardial protective factor IL-15 decreased. Correlation analysis indicated a positive correlation between IL-15 and CD4+ TCM cells, with high expression of IL-15 receptor IL15RA. Furthermore, in vivo studies using an anti-PDL1 antibody in a mouse tumor model indicated a reduction in CD4+ TCM cells and an increase in CD8+ TEMRA cells, alongside evidence of cardiac fibrosis. Conversely, combining anti-PDL1 antibody treatment with IL-15 led to a resurgence of CD4+ TCM cells, a reduction in CD8+ TEMRA cells, and a mitigated risk of cardiac fibrosis. CONCLUSIONS: Our data highlight CD4+ TCM cells as a crucial role in cardiac protection during ICIs therapy. IL-15, IL4I1 and CD4+ TCM cells can serve as therapeutic targets to reduce ICIs-associated myocarditis in cancer patients.

2.
Mol Biomed ; 5(1): 19, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38782774

RESUMO

Carcinoembryonic antigen (CEA) is a tumor-associated antigen primarily produced by tumor cells. It has been implicated in various biological processes such as cell adhesion, proliferation, differentiation, and metastasis. Despite this, the precise molecular mechanisms through which CEA enhances tumor cell proliferation remain largely unclear. Our study demonstrates that CEA enhances the proliferation and migration of non-small cell lung cancer (NSCLC) while also inhibiting cisplatin-induced apoptosis in NSCLC cells. Treatment with CEA led to an increase in mitochondrial numbers and accumulation of lipid droplets in A549 and H1299 cells. Additionally, our findings indicate that CEA plays a role in regulating the fatty acid metabolism of NSCLC cells. Inhibiting fatty acid metabolism significantly reduced the CEA-mediated proliferation and migration of NSCLC cells. CEA influences fatty acid metabolism and the proliferation of NSCLC cells by activating the PGC-1α signaling pathway. This regulatory mechanism involves CEA increasing intracellular cAMP levels, which in turn activates PKA and upregulates PGC-1α. In NSCLC, inhibiting the PKA-PGC-1α signaling pathway reduces both fatty acid metabolism and the proliferation and migration induced by CEA, both in vitro and in vivo. These results suggest that CEA contributes to the promotion of proliferation and migration by modulating fatty acid metabolism. Targeting CEA or the PKA-PGC-1ɑ signaling pathway may offer a promising therapeutic approach for treating NSCLC.


Assuntos
Antígeno Carcinoembrionário , Carcinoma Pulmonar de Células não Pequenas , Movimento Celular , Proliferação de Células , Proteínas Quinases Dependentes de AMP Cíclico , Neoplasias Pulmonares , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Transdução de Sinais , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Humanos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Antígeno Carcinoembrionário/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Animais , Progressão da Doença , Camundongos , Apoptose/efeitos dos fármacos , Ácidos Graxos/metabolismo
3.
Mater Today Bio ; 25: 101005, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38445013

RESUMO

Lung cancer is the deadliest kind of cancer in the world, and the hypoxic tumor microenvironment can significantly lower the sensitivity of chemotherapeutic drugs and limit the efficacy of different therapeutic approaches. In order to overcome these problems, we have designed a drug-loaded targeted DNA nanoflowers encoding AS1411 aptamer and encapsulating chemotherapeutic drug doxorubicin and oxygen-producing drug horseradish peroxidase (DOX/HRP-DFs). These nanoflowers can release drugs in response to acidic tumor microenvironment and alleviate tumor tissue hypoxia, enhancing the therapeutic effects of chemotherapy synergistic with sonodynamic therapy. Owing to the encoded drug-loading sequence, the doxorubicin loading rate of DNA nanoflowers reached 73.24 ± 3.45%, and the drug could be released quickly by disintegrating in an acidic environment. Furthermore, the AS1411 aptamer endowed DNA nanoflowers with exceptional tumor targeting properties, which increased the concentration of chemotherapeutic drug doxorubicin in tumor cells. It is noteworthy that both in vitro and in vivo experiments demonstrated DNA nanoflowers could considerably improve the hypoxia of tumor cells, which enabled the generation of sufficient reactive oxygen species in combination with ultrasound, significantly enhancing the therapeutic effect of sonodynamic therapy and evidently inhibiting tumor growth and metastasis. Overall, this DNA nanoflowers delivery system offers a promising approach for treating lung cancer.

4.
Acta Cytol ; 68(2): 153-159, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38437810

RESUMO

INTRODUCTION: The diagnostic value of rapid on-site evaluation (ROSE) in bronchoscopy for lung tumors has been widely researched. However, the diagnostic efficacy of ROSE for pulmonary tuberculosis (TB) has not been extensively assessed yet. This study aimed to examine the value of ROSE in diagnosing pulmonary TB during bronchoscopy, and the relationship between ROSE cytology patterns and acid-fast bacilli (AFB) smears and mycobacterial cultures. METHODS: A retrospective study was conducted at a single respiratory endoscopy center, including 418 patients under clinical or radiological suspicion of having pulmonary TB who underwent bronchoscopy. In addition to the use of ROSE and definitive cytology, material obtained by aspiration/lavage or brushing was sent for AFB smear and mycobacterial culture. If histopathological examination was required, endobronchial biopsy, transbronchial lung biopsy, and transbronchial needle aspiration were performed at the discretion of the clinician. A composite reference standard (CRS) was used as the diagnostic gold standard for this study. The diagnosis obtained by ROSE was compared with the final diagnosis. RESULTS: Of the 418 patients studied, 282 (67.5%) were diagnosed on the basis of bronchoscopic findings, as follows: pulmonary TB, in 238 (84.4%); non-TB, in 44 (15.6%). In 238 pulmonary TB patients, ROSE cytology showed granulomas without necrosis were observed in 107 cases, granulomas and necrosis in 51 cases, caseous necrosis only in 25 cases, and nonspecific inflammation in 55 cases. For the diagnosis of TB according to CRS, ROSE showed the sensitivity, specificity, positive predictive value, and negative predictive value were 76.9%, 68.2%, 92.9%, and 35.3%, respectively. The positivity rate for bacterial detection through acid-fast staining and culture during bronchoscopy was 51.7%. The cytological pattern showed a higher detection rate for bacteria in cases of necrosis. DISCUSSION: The application of ROSE during bronchoscopy is a straightforward procedure that delivers an immediate and precise assessment regarding the adequacy of collected samples, enabling a preliminary diagnosis of pulmonary TB. ROSE has exhibited a higher sensitivity in detecting pulmonary TB compared to microbiological examinations. In addition, the cytological presentation of ROSE tends to show a higher positivity rate for microbiological testing in caseous necrosis. Therefore, samples with these characteristics should be prioritized for microbiological examination after on-site evaluation.


Assuntos
Broncoscopia , Tuberculose Pulmonar , Humanos , Broncoscopia/métodos , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/patologia , Tuberculose Pulmonar/microbiologia , Estudos Retrospectivos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Idoso , Valor Preditivo dos Testes , Avaliação Rápida no Local , Mycobacterium tuberculosis/isolamento & purificação , Adulto Jovem , Pulmão/patologia , Pulmão/microbiologia , Idoso de 80 Anos ou mais
5.
JAMA Oncol ; 10(4): 448-455, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38329745

RESUMO

Importance: The bioequivalence of denosumab biosimilar has yet to be studied in a 53-week, multicenter, large-scale, and head-to-head trial. A clinically effective biosimilar may help increase access to denosumab in patients with solid tumor-related bone metastases. Objectives: To establish the biosimilarity of MW032 to denosumab in patients with solid tumor-related bone metastases based on a large-scale head-to-head study. Design, Setting, and Participants: In this 53-week, randomized, double-blind, phase 3 equivalence trial, patients with solid tumors with bone metastasis were recruited from 46 clinical sites in China. Overall, 856 patients were screened and 708 eligible patients were randomly allocated to receive either MW032 or denosumab. Interventions: Patients were randomly assigned (1:1) to receive MW032 or reference denosumab subcutaneously every 4 weeks until week 49. Main Outcomes and Measures: The primary end point was percentage change from baseline to week 13 of natural logarithmic transformed urinary N-telopeptide/creatinine ratio (uNTx/uCr). Results: Among the 701 evaluable patients (350 in the MW032 group and 351 in the denosumab group), the mean (range) age was 56.1 (22.0-86.0) years and 460 patients were women (65.6%). The mean change of uNTx/uCr from baseline to week 13 was -72.0% (95% CI, -73.5% to -70.4%) in the MW032 group and -72.7% (95% CI, -74.2% to -71.2%) in the denosumab group. These percent changes corresponded to mean logarithmic ratios of -1.27 and -1.30, or a difference of 0.02. The 90% CI for the difference (-0.04 to 0.09) was within the equivalence margin (-0.13 to 0.13); the mean changes of uNTx/uCr and bone-specific alkaline phosphatase (s-BALP) at each time point were also similar during 53 weeks. The differences of uNTx/uCr change were 0.015 (95% CI, -0.06 to 0.09), -0.02 (95% CI, -0.09 to 0.06), -0.05 (95% CI, -0.13 to 0.03) and 0.001 (95% CI, -0.10 to 0.10) at weeks 5, 25, 37, and 53, respectively. The differences of s-BALP change were -0.006 (95% CI, 0.06 to 0.05), 0.00 (95% CI, -0.07 to 0.07), -0.085 (95% CI, -0.18 to 0.01), -0.09 (95% CI, -0.20 to 0.02), and -0.13 (95% CI, -0.27 to 0.004) at weeks 5, 13, 25, 37 and 53, respectively. No significant differences were observed in the incidence of skeletal-related events (-1.4%; 95% CI, -5.8% to 3.0%) or time to first on-study skeletal-related events (unadjusted HR, 0.86; P = .53; multiplicity adjusted HR, 0.87; P = .55) in the 2 groups. Conclusions and Relevance: MW032 and denosumab were biosimilar in efficacy, population pharmacokinetics, and safety profile. Availability of denosumab biosimilars may broaden the access to denosumab and reduce the drug burden for patients with advanced tumors. Trial Registration: ClinicalTrials.gov Identifier: NCT04812509.


Assuntos
Medicamentos Biossimilares , Neoplasias Ósseas , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Masculino , Denosumab , Anticorpos Monoclonais Humanizados , Neoplasias Ósseas/secundário , Creatinina , Método Duplo-Cego
6.
Int J Nanomedicine ; 18: 6257-6274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936950

RESUMO

Purpose: Tuberculosis (TB) is a chronic disease caused by Mycobacterium tuberculosis (MTB) that remains a major global health challenge. One of the main obstacles to effective treatment is the heterogeneous microenvironment of TB granulomas. This study aimed to investigate the potential of a hypoxic remission-based strategy to enhance the outcome of tuberculosis treatment when implemented in combination with ultrasound. Methods: A PLGA nanoparticle (LEV@CAT-NPs) loaded with levofloxacin (LEV) and catalase (CAT) was fabricated by a double emulsification method, and its physical characteristics, oxygen production capacity, drug release capacity, and biosafety were thoroughly investigated. The synergistic therapeutic effects of ultrasound (US)-mediated LEV@CAT-NPs were evaluated using an experimental mouse model of subcutaneous tuberculosis granuloma induced by Bacille Calmette-Guérin (BCG) as a substitute for MTB. Results: LEV@CAT-NPs exhibited excellent oxygen production capacity, biosafety, and biocompatibility. Histological analysis revealed that ultrasound-mediated LEV@CAT-NPs could effectively remove bacteria from tuberculous granulomas, significantly alleviate the hypoxia state, reduce the necrotic area and inflammatory cells within the granuloma, and increase the penetration of dyes in granuloma tissues. The combined treatment also reduced the serum levels of inflammatory cytokines (eg, TNF-α, IL-6, and IL-8), and significantly downregulated the expression of hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF). These results suggested that the synergistic treatment of ultrasound-mediated LEV@CAT-NPs effectively eradicated the bacterial infection and reversed the hypoxic microenvironment of tuberculous granulomas, further promoting tissue repair. Conclusion: This study provides a non-invasive and new avenue for treating refractory tuberculosis infections. The potential role of regulating hypoxia within infected lesions as a therapeutic target for infection deserves further exploration in future studies.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Catalase , Tuberculose/tratamento farmacológico , Granuloma/tratamento farmacológico , Granuloma/microbiologia , Hipóxia , Oxigênio
7.
Cancer Med ; 12(18): 18531-18541, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37584246

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) have emerged as a standard treatment for various malignancies. However, research indicates blocking the immune checkpoint pathway may exacerbate atherosclerotic lesions. OBJECTIVES: We aimed to investigate whether ICI therapy increases the risk of arterial thromboembolic events (ATEs). METHODS: A retrospective cohort study was conducted on patients with histologically confirmed cancer at our institution between 2018 and 2021, using the propensity score matching method. The primary endpoint was ATEs occurrence, comprising acute coronary syndrome, stroke/transient ischemic attack, and peripheral arterial thromboembolism. Subgroup analyses assessed whether the ICI treatment effect on ATEs varied over time by limiting the maximum follow-up duration. Logistic regression analysis identified ATE risk factors in ICI-treated patients. RESULTS: Overall, the ICI group (n = 2877) demonstrated an ATEs risk 2.01 times higher than the non-ICI group (RR, 2.01 [95% CI (1.61-2.51)]; p < 0.001). Subgroup analysis revealed no significant increase in ATEs risk for ICI-treated patients within 1 year (Limited to a max 9-month follow-up, p = 0.075). However, ATEs risk in the ICI group rose by 41% at 1 year (p = 0.010) and 97% at 4 years (p ≤ 0.001). Age, diabetes, hypertension, peripheral atherosclerosis, atrial fibrillation, chronic ischemic heart disease, distant cancer metastasis, and ICI treatment cycles contributed to ATEs risk elevation in ICI-treated patients. CONCLUSION: ICI-treated patients may exhibit a higher risk of ATEs, especially after 1 year of treatment.

8.
Turk J Gastroenterol ; 34(9): 902-910, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37485559

RESUMO

BACKGROUND/AIMS: Several cancers have been associated with poor prognoses based on nestin, a confirmed marker of cancer stem cells. However, there is conflicting evidence regarding the prognostic value of tumor nestin expression in patients with digestive tract cancers. An investigation of the association between nestin and survival in patients with digestive tract cancers was performed in this meta-analysis. MATERIALS AND METHODS: Meta-analyses were conducted using PubMed, Embase, and Web of Science databases to search for cohort studies. We analyzed the data using a random-effects model that incorporates differences between studies. RESULTS: The pooled analysis showed a negative association between nestin expression and overall survival (hazard ratio: 1.38, 95% CI: 1.11 to 1.72, P = .004, I2 = 68%) and disease-free survival (hazard ratio: 1.48, 95% CI: 1.12 to 1.96, P = .005, I2 = 56%). Subgroup analysis showed that nestin expression was associated with poorer overall survival in gastric cancer (hazard ratio: 1.46, P < .001) and liver cancer (hazard ratio: 2.05, P < .001) patients, but not in colorectal cancer (hazard ratio: 1.03, P = .89) or pancreatic cancer (hazard ratio: 0.96, P = .80) patients. Further subgroup analysis showed a consistent association between nestin expression and poor overall survival in Asian and non-Asian studies, and in studies with univariate and multivariate regression models. CONCLUSION: To sum up, the presence of high nestin expression in digestive tract cancer patients is associated with poorer survival, particularly in patients with gastric and liver cancers.


Assuntos
Neoplasias Gastrointestinais , Neoplasias Hepáticas , Neoplasias Gástricas , Humanos , Nestina , Prognóstico , Biomarcadores Tumorais/metabolismo
9.
Front Microbiol ; 14: 1108064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937280

RESUMO

Tuberculosis is a chronic infectious disease, the treatment of which is challenging due to the formation of cellulose-containing biofilms by Mycobacterium tuberculosis (MTB). Herein, a composite nanoparticle loaded with cellulase (CL) and levofloxacin (LEV) (CL@LEV-NPs) was fabricated and then combined with ultrasound (US) irradiation to promote chemotherapy and sonodynamic antimicrobial effects on Bacillus Calmette-Guérin bacteria (BCG, a mode of MTB) biofilms. The CL@LEV-NPs containing polylactic acid-glycolic acid (PLGA) as the shell and CL and LEV as the core were encapsulated via double ultrasonic emulsification. The synthesized CL@LEV-NPs were uniformly round with an average diameter of 196.2 ± 2.89 nm, and the zeta potential of -14.96 ± 5.35 mV, displaying high biosafety and sonodynamic properties. Then, BCG biofilms were treated with ultrasound and CL@LEV-NPs separately or synergistically in vivo and in vitro. We found that ultrasound significantly promoted biofilms permeability and activated CL@LEV-NPs to generate large amounts of reactive oxygen species (ROS) in biofilms. The combined treatment of CL@LEV-NPs and US exhibited excellent anti-biofilm effects, as shown by significant reduction of biofilm biomass value and viability, destruction of biofilm architecture in vitro, elimination of biofilms from subcutaneous implant, and remission of local inflammation in vivo. Our study suggested that US combined with composite drug-loaded nanoparticles would be a novel non-invasive, safe, and effective treatment modality for the elimination of biofilm-associated infections caused by MTB.

10.
Gene ; 863: 147288, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36804853

RESUMO

OBJECTIVE: To explore HIF1α and HIF2α regulate the dedifferentiation of lung cancer cells under hypoxic conditions through Sox2 and Oct4. MATERIALS AND METHODS: HIF1α, HIF2α, Sox2 and Oct4 expression was analysed in lung cancer tissues. We analysed sphere formation by single-cell of differentiated lung cancer under hypoxia, and detected the expression of CD133, CD44, Sox2, Oct4, HIF1α and HIF2α. We knocked out HIF1α, HIF2α, Sox2 or Oct4 in cells, cultured the cells under hypoxic conditions and detected CD133 and CD44 using western blotting. We also detected the apoptosis rate of cells with HIF1α, HIF2α, Sox2 or Oct4 knockout. RESULTS: There was more sphere formation of differentiated lung cancer cells under hypoxic conditions than of control cells under normoxic conditions. These newly formed spheres highly expressed CD133 and CD44. TCGA database showed high expression of HIF1α and HIF2α in lung cancer tissues. After knocking out HIF1α and HIF2α, the expression of Sox2, Oct4, CD133 and CD44 decreased significantly, and after knocking out Sox2 or Oct4, the expression of CD133 and CD44 decreased. CONCLUSION: HIF1α and HIF2α regulate non-small-cell lung cancer dedifferentiation through Sox2 and Oct4 under hypoxic conditions.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Hipóxia/genética , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
11.
Front Pharmacol ; 13: 901887, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677441

RESUMO

Background: Venous thromboembolism (VTE) is a potential complication among lymphoma patients. We evaluated the incidence rate and predictors of VTE in lymphoma patients undergoing chemotherapy. Methods: The present study retrospectively studied 1,069 patients with lymphoma who were treated with chemotherapy from 2018 to 2020. We investigated clinical predictors of VTE among all patients. The follow-up results were obtained via telephone communication and from inpatient and outpatient records. Results: A total of 1,069 patients underwent chemotherapy for lymphoma. During a mean follow-up of 23.1 months, 52 (4.9%) patients developed VTE. According to a multivariate analysis, the five variables found to be independently associated with VTE were male sex (HR 2.273, 95% CI 1.197-4.316, p = 0.012), age >64-years-old (HR 2.256, 95% CI 1.017-5.005, p = 0.045), the number of cycles of chemotherapy (HR 4.579, 95% CI 1.173-17.883, p = 0.029), platelet count ≥350 × 109/L (HR 2.533, 95% CI 1.187-5.406, p = 0.016), and D-dimer >0.5 mg/L (HR 4.367, 95% CI 2.124-8.981, p < 0.001). Conclusion: This population-based study confirms the risk factors for VTE among patients with lymphoma who underwent chemotherapy and confirms that targeted thromboprophylaxis may reduce the burden of VTE in this population.

12.
Analyst ; 147(4): 634-644, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35040831

RESUMO

Monitoring the cell surface-expressed nucleolin facilitates early cancer diagnosis. Herein, we developed a multivalent aptamer displacement strand duplex strategy on cell membranes using a multi-receptor co-recognition design for improving the sensitivity and specificity of cancer cell recognition with an ultra-low background. The AS1411 aptamer labeled with the FAM fluorophore can be quenched using a partial complementary sequence modified with a BHQ1 tag which is partially hybridized with the AS1411 aptamer to create a receptor-activating aptamer. The multi-AS1411 activable probe based on the strand displacement strategy was constructed using multiple copies of the structure-switching AS1411 aptamer (bearing a short poly-A tail) linked together using the poly-T long chain (as a scaffold) which was synthesized by Terminal Deoxynucleotidyl Transferase (TDT)-mediated extension. We demonstrated the promising efficacy and sensitivity of our method in recognizing tumor cells in both cell mixtures and clinical cytology specimens. Due to its simple and fast operation with excellent cell recognition sensitivity and accuracy, it is expected to achieve the detection of low abundance target cells. Our approach will have broad application in clinical rapid detection and personalized medicine.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias , DNA Nucleotidilexotransferase , Corantes Fluorescentes , Humanos , Neoplasias/diagnóstico , Oligodesoxirribonucleotídeos
13.
Ann Transl Med ; 10(24): 1334, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36660644

RESUMO

Background: Keeping on original epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) treatment is the standard treatment for gradual progression EGFR-positive metastatic non-small cell lung cancer (NSCLC). Angiogenic pathway can lead to EGFR-TKI resistance, but the effectiveness of combination strategies in this group is still controversial. This study aimed to assess the efficacy and safety of the original EGFR-TKI combined with bevacizumab in advanced and metastatic lung adenocarcinoma patients harboring EGFR-mutation who experience gradual progression in a real-world setting. Methods: From June 2019 to December 2021, a total of 35 metastatic EGFR positive NSCLC patients experienced gradual progression after EGFR-TKI treatments and received original TKI combined with bevacizumab were identified at Chongqing University Cancer Hospital, China. All patients were confirmed EGFR positive by rebiopsy before treatment. Patients were treated with EGFR-TKI and bevacizumab (15 mg/kg Q3W) after gradual progression until rapid progression or intolerable toxicity. The overall survival (OS), progression-free survival 1 (PFS1, period from the beginning of EGFR-TKI treatment to the rapid progression of the disease), PFS2 (period from the beginning of EGFR-TKI combined with bevacizumab treatment to the rapid progression of the disease), disease control rate (DCR), and adverse events of the combined treatment were collected and analyzed. Results: A total of 33 patients could participate the efficacy evaluation. Median PFS1 and PFS2 were 20.5 and 8 months, respectively; DCR was 93.94%; median OS was immature. Multivariate Cox proportional hazards model showed that smoking status [hazard ratio (HR) =3.692, 95% confidence interval (CI): 1.450-9.404, P=0.006], combined EGFR T790M mutation or rare mutation (HR =2.480, 95% CI: 1.073-5.729, P=0.034), and malignant pleural effusion (HR =3.707, 95% CI: 1.460-9.414, P=0.006) were independent risk factors for PFS2. The most common treatment-related adverse events greater than grade 3 included hypertension (23.7%), proteinuria (8.3%), and increased alanine aminotransferase (ALT; 4.1%) and aspartate aminotransferase (AST; 2.9%). Conclusions: Continuous original TKI combined with bevacizumab showed partly favorable efficacy and safety and may represent a therapeutic option for metastatic EGFR-mutation NSCLC patients experiencing gradual progression after EGFR-TKI treatment.

14.
Medicine (Baltimore) ; 100(50): e27709, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34918627

RESUMO

INTRODUCTION: The efficacy of neoadjuvant nimotuzumab for gastric cancer remained controversial. We conducted a systematic review and meta-analysis to explore the efficacy of neoadjuvant nimotuzumab plus chemotherapy vs chemotherapy for gastric cancer. METHODS: We have searched PubMed, EMbase, Web of science, EBSCO, and Cochrane library databases through May 2019, and included randomized controlled trials assessing the efficacy of neoadjuvant nimotuzumab plus chemotherapy vs chemotherapy for gastric cancer. This meta-analysis was performed using the random-effect model. RESULTS: Four randomized controlled trials were included in the meta-analysis. There were 128 patients included in intervention group and 131 patients included in control group. Overall, compared with chemotherapy for gastric cancer, neoadjuvant nimotuzumab plus chemotherapy showed no substantial influence on response rate (risk ratio [RR] = 1.22; 95% CI = 0.78-1.89; P = .38), disease control rate (RR = 2.22; 95% confidence interval [CI] = 0.32-15.40; P = .42), rash (RR = 1.26; 95% CI = 0.96-1.66; P = .10), neutropenia (RR = 1.26; 95% CI = 0.96-1.66; P = .10), anemia (RR = 1.08; 95% CI = 0.62-1.89; P = .78), or nausea (RR = 1.19; 95% CI = 0.96-1.48; P = .12), but might improve the incidence of vomiting (RR = 1.60; 95% CI = 1.03-2.50; P = .04). CONCLUSIONS: Neoadjuvant nimotuzumab might provide no additional benefits to the treatment of gastric cancer.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Terapia Neoadjuvante , Neoplasias Gástricas/tratamento farmacológico , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
15.
Int J Nanomedicine ; 16: 6553-6573, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602818

RESUMO

PURPOSE: The rapid emergence of multidrug-resistant Mycobacterium tuberculosis (MTB) poses a significant challenge to the treatment of tuberculosis (TB). Sonodynamic antibacterial chemotherapy (SACT) combined with sonosensitizer-loaded nanoparticles with targeted therapeutic function is highly expected to eliminate bacteria without fear of drug resistance. This study aimed to investigate the antibacterial effect and underlying mechanism of levofloxacin-loaded nanosonosensitizer with targeted therapeutic function against Bacillus Calmette-Guérin bacteria (BCG, an MTB model). METHODS: This study developed levofloxacin-loaded PLGA-PEG (poly lactide-co-glycolide-polyethylene glycol) nanoparticles with BM2 aptamer conjugation on its surface using the crosslinking agents EDC and NHS (BM2-LVFX-NPs). The average diameter, zeta potential, morphology, drug-loading properties, and drug release efficiency of the BM2-LVFX-NPs were investigated. In addition, the targeting and toxicity of BM2-LVFX-NPs in the subcutaneous BCG infection model were evaluated. The biosafety, reactive oxygen species (ROS) production, cellular phagocytic effect, and antibacterial effect of BM2-LVFX-NPs in the presence of ultrasound stimulations (42 kHz, 0.67 W/cm2, 5 min) were also systematically evaluated. RESULTS: BM2-LVFX-NPs not only specifically recognized BCG bacteria in vitro but also gathered accurately in the lesion tissues. Drugs loaded in BM2-LVFX-NPs with the ultrasound-responsive feature were effectively released compared to the natural state. In addition, BM2-LVFX-NPs exhibited significant SACT efficiency with higher ROS production levels than others, resulting in the effective elimination of bacteria in vitro. Meanwhile, in vivo experiments, compared with other options, BM2-LVFX-NPs also exhibited an excellent therapeutic effect in a rat model with BCG infection after exposure to ultrasound. CONCLUSION: Our work demonstrated that a nanosonosensitizer formulation with LVFX could efficiently translocate therapeutic drugs into the cell and improve the bactericidal effects under ultrasound, which could be a promising strategy for targeted therapy for MTB infections with high biosafety.


Assuntos
Mycobacterium tuberculosis , Nanopartículas , Animais , Vacina BCG , Liberação Controlada de Fármacos , Levofloxacino , Ratos
16.
ACS Biomater Sci Eng ; 7(3): 1169-1180, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33541073

RESUMO

Small-cell lung cancer (SCLC) is characterized by early metastasis and high invasiveness, poor prognosis, and a low five-year survival rate. Therefore, the development of the effective detection of SCLC cells and imaging methods has potential significance for the prognosis and treatment of SCLC. We designed a terminal deoxynucleotidyl transferase (TdT)-mediated extension polymerization aptamer probe (denoted as TEPAP). Aptamer HCC03 was used as an element of recognizing SCLC, and it was extended as a long poly(T) tail at the 3'-hydroxyl terminus by TdT and then hybridized with short poly(A) labeled with 6-carboxyfluorescein (FAM) to construct TEPAP for the high-sensitivity detection of SCLC. The results showed that the probe could specifically recognize NCI-H446 cells. Compared with HCC03 labeled with FAM, TEPAP has demonstrated a higher fluorescence signal in recognizing NCI-H446 cells, and the fluorescence intensity of TEPAP recognizing the target cells was 10 times higher than that of nontarget cells. Flow cytometric analysis showed that the detection limit of this method was as low as 17 NCI-H446 cells in 200 µL of binding buffer. In the application of clinical cytology cell blocks, the sensitivity, specificity, and accuracy of TEPAP were 89.74, 94.44, and 91.23%, respectively. The high sensitivity and specificity of TEPAP in the application of clinical samples show that the proposed probe has great potential in the diagnosis of SCLC.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , DNA Nucleotidilexotransferase , Humanos , Neoplasias Pulmonares/diagnóstico , Polimerização , Carcinoma de Pequenas Células do Pulmão/diagnóstico
17.
NanoImpact ; 21: 100275, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-35559767

RESUMO

The prevalence and fatality rates with fungal biofilm-associated infections urgently need to develop targeted therapeutic approaches to augment the action of antifungal drugs. This study developed amphotericin B-loaded PLGA-PEG nanoparticles (AmB-NPs) with AD1 aptamer conjugation on its surface via an EDC/NHS technique. Their high nuclease resistance of the conjugation was confirmed by PAGE gel electrophoresis. The targeting and toxicity of AD1-AmB-NPs in the subcutaneous C. albicans infection model were evaluated. AD1-AmB-NPs can bind to different morphological forms(including yeast cells, germ tubes, hyphae) of C. albicans biofilms and extracellular matrix material. Low-frequency and low-intensity ultrasound (LFU, with a fixed frequency of 42 kHz, at the intensity of 0.30 W/cm2 for 15 min) significantly promoted permeability of the biofilm and allowed AD1-AmB-NPs into the deepest layers of the biofilm. After 7 days of treatment, the combination treatment of AD1-AmB-NPs and LFU, kills at least 99% of the biofilm fungal population in vivo comparison with ultrasound alone or AD1-AmB-NPs alone, and returned to normal subcutaneously. Our data suggest that the combined strategy of AD1-AmB-NPs and ultrasound treatment selective delivered of therapeutic drugs to the infection site and exhibited significant synergistic antifungal effects.


Assuntos
Anfotericina B , Nanopartículas , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Biofilmes , Candida albicans , Nanopartículas/uso terapêutico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia
18.
Epigenomics ; 12(20): 1793-1810, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33016107

RESUMO

Aim: To explore the biological functions and clinical significance of CAVIN2 in lung cancer. Materials & methods: Methylation-specific PCR was used to measure promoter methylation of CAVIN2. The function of CAVIN2 was tested by Cell Counting Kit-8, colony formation, Transwell, flow cytometric analysis, acridine orange/ethidium bromide, chemosensitivity assay and xenograft assay. Results: CAVIN2 is significantly downregulated by promoter methylation in lung cancer. CAVIN2 overexpression inhibits lung cancer cell migration and invasion. Furthermore, ectopic expression of CAVIN2 inhibits cell proliferation in vivo and in vitro by inducing G2/M cell cycle arrest, which sensitizes the chemosensitivity of lung cancer cells to paclitaxel and 5-fluorouracil, but not cisplatin. Conclusion: CAVIN2 is a tumor suppressor in non-small-cell lung cancer and can sensitize lung cancer cells to paclitaxel and 5-fluorouracil.


Assuntos
Antineoplásicos/uso terapêutico , Metilação de DNA , Fluoruracila/uso terapêutico , Inativação Gênica , Neoplasias Pulmonares/genética , Paclitaxel/uso terapêutico , Proteínas de Ligação a Fosfato/genética , Animais , Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Ilhas de CpG , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Camundongos Nus , Invasividade Neoplásica , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/fisiologia , Regiões Promotoras Genéticas
19.
Cancer Manag Res ; 12: 5469-5478, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32753964

RESUMO

INTRODUCTION: Circular RNAs (circRNAs) are deregulated in many types of human cancers, including non-small cell lung cancer (NSCLC). In this study, we aimed to explore the functional role of circMYLK in NSCLC. MATERIALS AND METHODS: The expression levels of circMYLK and miR-195-5p in NSCLC tissues and cell lines were detected by RT-qPCR analysis. MTT assay, colony formation assay and transwell assay were performed to investigate the effects of circMYLK and miR-195-5p on the malignant phenotypes of NSCLC cells. The glucose consumption and lactate production of NSCLC cells were detected using commercial kits. The direct binding relation between circMYLK and miR-195-5p in NSCLC was predicted by bioinformatics analysis and validated by dual-luciferase reporter assay. RESULTS: The results showed that circMYLK was significantly up-regulated in NSCLC tissues and cell lines, and its high expression was closely associated with deleterious clinicopathological characteristics and poor prognosis of NSCLC patients. Knockdown of circMYLK remarkably inhibited the malignant phenotypes of NSCLC cells, including proliferation, migration, invasion, glucose consumption and lactate production. Moreover, circMYLK was identified as a molecule sponge for miR-195-5p, and glucose transporter member 3 (GLUT3) was shown to be a target gene of miR-195-5p in NSCLC. Further rescue experiments revealed that the oncogenic effects of circMYLK on NSCLC cells could be largely abrogated by co-transfection with miR-195-5p mimic. CONCLUSION: In summary, our study provides convincing evidence that circMYLK serves as a tumor promoter in NSCLC and can be used as a potential therapeutic target for NSCLC patients.

20.
J Nanobiotechnology ; 18(1): 107, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727616

RESUMO

PURPOSE: Tuberculosis (TB) is a highly infectious disease caused by Mycobacterium tuberculosis (Mtb), which often parasites in macrophages. This study is performed to investigate the bactericidal effect and underlying mechanisms of low-frequency and low-intensity ultrasound (LFLIU) combined with levofloxacin-loaded PLGA nanoparticles (LEV-NPs) on M. smegmatis (a surrogate of Mtb) in macrophages. METHODS AND RESULTS: The LEV-NPs were prepared using a double emulsification method. The average diameter, zeta potential, polydispersity index, morphology, and drug release efficiency in vitro of the LEV-NPs were investigated. M. smegmatis in macrophages was treated using the LEV-NPs combined with 42 kHz ultrasound irradiation at an intensity of 0.13 W/cm2 for 10 min. The results showed that ultrasound significantly promoted the phagocytosis of nanoparticles by macrophages (P < 0.05). In addition, further ultrasound combined with the LEV-NPs promoted the production of reactive oxygen species (ROS) in macrophage, and the apoptosis rate of the macrophages was significantly higher than that of the control (P < 0.05). The transmission electronic microscope showed that the cell wall of M. smegmatis was ruptured, the cell structure was incomplete, and the bacteria received severe damage in the ultrasound combined with the LEV-NPs group. Activity assays showed that ultrasound combined with the LEV-NPs exhibited a tenfold higher antibacterial activity against M. smegmatis residing inside macrophages compared with the free drug. CONCLUSION: These data demonstrated that ultrasound combined with LEV-NPs has great potential as a therapeutic agent for TB.


Assuntos
Antibacterianos , Levofloxacino , Macrófagos/microbiologia , Mycobacterium smegmatis , Nanopartículas/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/toxicidade , Levofloxacino/química , Levofloxacino/farmacologia , Camundongos , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/efeitos da radiação , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Células RAW 264.7 , Ondas Ultrassônicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...