Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
Nat Prod Res ; : 1-4, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39351995

RESUMO

A natural deep eutectic solvent-based ultrasound-assisted simultaneous extraction (NADES-UAE) of camptothecin (CPT) and 10-hydroxycamptothecin (10-HCPT) was established. The 1.31 mg of CPT and 1.66 mg of 10-HCPT were obtained from each gram of the fruit powder of Camptotheca acuminata under the optimum conditions with a water content of 20%, a liquid-solid ratio of 12 mL/g and an ultrasound time of 20 min. The recovery efficiencies of CPT and 10-HCPT after AB-8 resin enrichment were 70.5% and 74.8%, respectively. The stronger interaction between NADES3 which was screened from 12 kinds of NADES and target components compared with methanol or water was demonstrated using molecular dynamics simulation. Moreover, the recovered NADES3 could be reused at least 4 times. The present research provided an efficient, environment-friendly, and sustainable method for extracting and recovering CPT and 10-HCPT from the fruits of C. acuminata.

2.
Cell Rep ; 43(9): 114728, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39264808

RESUMO

Pyroptosis, a pro-inflammatory form of programmed cell death, is crucial for host defense against pathogens and danger signals. Proteolytic cleavage of gasdermin proteins B-E (GSDMB-GSDME) is well established as a trigger for pyroptosis, but the intracellular activation mechanism of GSDMA remains elusive. Here, we demonstrate that severe starvation induces pyroptosis through phosphorylation-induced activation of GSDMA. Nutrient stresses stimulate GSDMA activation via phosphorylation mediated by Unc-51-like autophagy-activating kinase 1 (ULK1). Phosphorylation of Ser353 on human GSDMA by ULK1 or the phospho-mimetic Ser353Asp mutant of GSDMA liberates GSDMA from auto-inhibition, facilitating its membrane targeting and initiation of pyroptosis. To further validate the significance of GSDMA phosphorylation, we generated a constitutively active mutant Ser354Asp of mouse Gsdma, which induced skin inflammation and hyperplasia in mice, reminiscent of phenotypes with activated Gsdma. This study uncovers phosphorylation of GSDMA as a mechanism underlying pyroptosis initiation and cellular response to nutrient stress.


Assuntos
Gasderminas , Piroptose , Animais , Humanos , Camundongos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Gasderminas/metabolismo , Células HEK293 , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Fosforilação , Inanição/metabolismo
3.
Sci China Life Sci ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39231901

RESUMO

The innovation of CRISPR/Cas gene editing technology has developed rapidly in recent years. It is widely used in the fields of disease animal model construction, biological breeding, disease diagnosis and screening, gene therapy, cell localization, cell lineage tracking, synthetic biology, information storage, etc. However, developing idealized editors in various fields is still a goal for future development. This article focuses on the development and innovation of non-DSB editors BE and PE in the platform-based CRISPR system. It first explains the application of ideas for improvement such as "substitution", "combination", "adaptation", and "adjustment" in BE and PE development and then catalogues the ingenious inversions and leaps of thought reflected in the innovations made to CRISPR technology. It will then elaborate on the efforts currently being made to develop small editors to solve the problem of AAV overload and summarize the current application status of editors for in vivo gene modification using AAV as a delivery system. Finally, it summarizes the inspiration brought by CRISPR/Cas innovation and assesses future prospects for development of an idealized editor.

4.
Interdiscip Sci ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150470

RESUMO

Abnormal interaction between granulosa cells and oocytes causes disordered development of ovarian follicles. However, the interactions between oocytes and cumulus granulosa cells (CGs), oocytes and mural granulosa cells (MGs), and CGs and MGs remain to be fully explored. Using single-cell RNA-sequencing (scRNA-seq), we determined the transcriptional profiles of oocytes, CGs and MGs in antral follicles. Analysis of scRNA-seq data revealed that CGs may regulate follicular development through the BMP15-KITL-KIT-PI3K-ARF6 pathway with elevated expression of luteinizing hormone receptor (LHR). Because internalization of the LHR is regulated by Arf6, we constructed LHRN316S mice by CRISPR/Cas9 to further explore mechanisms of follicular development and novel treatment strategies for female infertility. Ovaries of LHRN316S mice exhibited reduced numbers of corpora lutea and ovulation. The LHRN316S mice had a reduced rate of oocyte maturation in vitro and decreased serum progesterone levels. Mating LHRN316S female mice with ICR wild type male mice revealed that the infertility rate of LHRN316S mice was 21.4% (3/14). Litter sizes from LHRN316S mice were smaller than those from control wild type female mice. The oocytes from LHRN316S mice had an increased rate of maturation in vitro after progesterone administration in vitro. Furthermore, progesterone treated LHRN316S mice produced offspring numbers per litter equivalent to WT mice. These findings provide key insights into cellular interactions in ovarian follicles and provide important clues for infertility treatment.

5.
Mol Cell ; 84(16): 3128-3140.e4, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39096898

RESUMO

The IscB proteins, as the ancestors of Cas9 endonuclease, hold great promise due to their small size and potential for diverse genome editing. However, their activity in mammalian cells is unsatisfactory. By introducing three residual substitutions in IscB, we observed an average 7.5-fold increase in activity. Through fusing a sequence-non-specific DNA-binding protein domain, the eIscB-D variant achieved higher editing efficiency, with a maximum of 91.3%. Moreover, engineered ωRNA was generated with a 20% reduction in length and slightly increased efficiency. The engineered eIscB-D/eωRNA system showed an average 20.2-fold increase in activity compared with the original IscB. Furthermore, we successfully adapted eIscB-D for highly efficient cytosine and adenine base editing. Notably, eIscB-D is highly active in mouse cell lines and embryos, enabling the efficient generation of disease models through mRNA/ωRNA injection. Our study suggests that these miniature genome-editing tools have great potential for diverse applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Edição de Genes/métodos , Camundongos , Humanos , Embrião de Mamíferos/metabolismo , Células HEK293 , Engenharia de Proteínas/métodos
6.
J Sport Health Sci ; : 100968, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39187065

RESUMO

BACKGROUND: Resistance exercise leads to improved muscle function and metabolic homeostasis. Yet how circadian rhythm impacts exercise outcomes and its molecular transduction remains elusive. METHODS: Human volunteers were subjected to 4 weeks of resistance training protocols at different times of day to assess training outcomes and their associations with myokine irisin. Based on rhythmicity of Fibronectin type III domain containing 5 (FNDC5/irisin), we trained wild type and FNDC5 knockout mice at late active phase (high FNDC5/irisin level) or late rest phase (low FNDC5/irisin level) to analyze exercise benefits on muscle function and metabolic homeostasis. Molecular analysis was performed to understand the regulatory mechanisms of FNDC5 rhythmicity and downstream signaling transduction in skeletal muscle. RESULTS: In this study, we showed that regular resistance exercises performed at different times of day resulted in distinct training outcomes in humans, including exercise benefits and altered plasma metabolomics. We found that muscle FNDC5/irisin levels exhibit rhythmicity. Consistent with human data, compared to late rest phase (low irisin level), mice trained chronically at late active phase (high irisin level) gained more muscle capacity along with improved metabolic fitness and metabolomics/lipidomics profiles under a high-fat diet, whereas these differences were lost in FNDC5 knockout mice. Mechanistically, Basic helix-loop-helix ARNT like 1 (BMAL1) and Peroxisome proliferative activated receptor, gamma, coactivator 1 alpha 4 (PGC1α4) induce FNDC5/irisin transcription and rhythmicity, and the signaling is transduced via αV integrin in muscle. CONCLUSION: Together, our results offered novel insights that exercise performed at distinct times of day determines training outcomes and metabolic benefits through the rhythmic regulation of the BMAL1/PGC1α4-FNDC5/irisin axis.

7.
Hum Gene Ther ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39078325

RESUMO

ß654-thalassemia is caused by a point mutation in the second intron (IVS-II) of the ß-globin gene that activates a cryptic 3' splice site, leading to incorrect RNA splicing. Our previous study demonstrated that when direct deletion of the ß654 mutation sequence or the cryptic 3' splice site in the IVS-II occurs, correct splicing of ß-globin mRNA can be restored. Herein, we conducted an in-depth analysis to explore a more precise gene-editing method for treating ß654-thalassemia. A single-base substitution of the cryptic 3' acceptor splice site was introduced in the genome of a ß654-thalassemia mouse model using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9(Cas9)-mediated homology-directed repair (HDR). All of the HDR-edited mice allow the detection of correctly spliced ß-globin mRNA. Pathological changes were improved compared with the nonedited ß654 mice. This resulted in a more than twofold increase in the survival rate beyond the weaning age of the mice carrying the ß654 allele. The therapeutic effects of this gene-editing strategy showed that the typical ß-thalassemia phenotype can be improved in a dose-dependent manner when the frequency of HDR is over 20%. Our research provides a unique and effective method for correcting the splicing defect by gene editing the reactive splicing acceptor site in a ß654 mouse model.

8.
Cell ; 187(18): 4890-4904.e9, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39013470

RESUMO

Allogeneic chimeric antigen receptor (CAR)-T cells hold great promise for expanding the accessibility of CAR-T therapy, whereas the risks of allograft rejection have hampered its application. Here, we genetically engineered healthy-donor-derived, CD19-targeting CAR-T cells using CRISPR-Cas9 to address the issue of immune rejection and treated one patient with refractory immune-mediated necrotizing myopathy and two patients with diffuse cutaneous systemic sclerosis with these cells. This study was registered at ClinicalTrials.gov (NCT05859997). The infused cells persisted for over 3 months, achieving complete B cell depletion within 2 weeks of treatment. During the 6-month follow-up, we observed deep remission without cytokine release syndrome or other serious adverse events in all three patients, primarily shown by the significant improvement in the clinical response index scores for the two diseases, respectively, and supported by the observations of reversal of inflammation and fibrosis. Our results demonstrate the high safety and promising immune modulatory effect of the off-the-shelf CAR-T cells in treating severe refractory autoimmune diseases.


Assuntos
Antígenos CD19 , Imunoterapia Adotiva , Miosite , Receptores de Antígenos Quiméricos , Escleroderma Sistêmico , Humanos , Antígenos CD19/imunologia , Antígenos CD19/metabolismo , Miosite/terapia , Miosite/imunologia , Escleroderma Sistêmico/terapia , Escleroderma Sistêmico/imunologia , Imunoterapia Adotiva/métodos , Feminino , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Masculino , Pessoa de Meia-Idade , Adulto , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transplante Homólogo
9.
Sci Rep ; 14(1): 13933, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886517

RESUMO

To address the measurement accuracy challenges posed by the internal flow complexity in atypical circular bend pipes with short turning sections and without extended straight pipe segments, this study designed an experimental circular "S"-shaped bent pipe with a diameter of 0.4 m and a bending angle of 135°. Numerical analysis was used to determine the stable region for velocity distribution within the experimental segment. Furthermore, a novel evaluation method based on the coefficient of variation was proposed to accurately locate the optimal position for installing thermal mass flow meters on the test cross section. Additionally, a formula for calculating the pipeline flow rate based on velocity differences was derived. This formula considers pipeline flow as the dependent variable and uses the velocity at two points in the test cross section as the independent variable. Experimental validation on a primary standard test bench demonstrated that the flow rate calculated by this method had an error controlled within 0.625% compared to the standard flow rate, thus effectively verifying the method's high accuracy and engineering applicability. This research provides a new testing methodology and practical basis for flow measurement in complex pipeline systems, offering significant guidance for research and applications in related fields.

11.
JAMA Neurol ; 81(7): 741-751, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805216

RESUMO

Importance: Comparisons are limited for immediate-intensive and delayed-intensive statin for secondary stroke prevention and neuroprotection in patients with acute mild ischemic stroke or transient ischemic attack (TIA) from atherosclerosis. Objective: To estimate whether immediate-intensive statin therapy is safe and can lower the risk of recurrent stroke compared with delayed-intensive statin in patients with acute mild ischemic stroke or high-risk TIA from atherosclerosis. Design, Setting, and Participants: The Intensive Statin and Antiplatelet Therapy for High-Risk Intracranial or Extracranial Atherosclerosis (INSPIRES) trial, a double-blind, placebo-controlled, 2 × 2 factorial, randomized clinical trial enrolled patients from September 2018 to October 2022. The trial was conducted at 222 hospitals in China. Patients aged 35 to 80 years with mild ischemic stroke or high-risk TIA of presumed atherosclerosis within 72 hours of symptom onset were assessed. Interventions: Patients were randomly assigned to receive immediate-intensive atorvastatin (80 mg daily on days 1-21; 40 mg daily on days 22-90) or 3-day delayed treatment (placebo for days 1-3, followed by placebo and atorvastatin, 40 mg daily on days 4-21, and then atorvastatin, 40 mg daily on days 22-90). Main Outcomes and Measures: The primary efficacy outcome was new stroke within 90 days, and a secondary efficacy outcome was poor functional outcome. Moderate to severe bleeding was the primary safety outcome. Results: A total of 11 431 patients were assessed for eligibility, and 6100 patients (median [IQR] age, 65 [57-71] years; 3915 men [64.2%]) were enrolled, with 3050 assigned to each treatment group. Within 90 days, new stroke occurred in 245 patients (8.1%) in the immediate-intensive statin group and 256 patients (8.4%) in the delayed group (hazard ratio, 0.95; 95% CI, 0.80-1.13). Poor functional outcome occurred in 299 patients (9.8%) and 348 patients (11.4%) in the immediate-intensive and delayed-intensive statin groups, respectively (odds ratio, 0.83; 95% CI, 0.71-0.98). Moderate to severe bleeding occurred in 23 of 3050 patients (0.8%) and 17 of 3050 patients (0.6%), in the immediate-intensive and delayed-intensive statin groups, respectively. Conclusions and Relevance: Immediate-intensive statin initiated within 72 hours did not reduce the risk of stroke within 90 days and may be associated with improved functional outcomes without significant difference in moderate to severe bleeding, compared with 3-day delayed-intensive statin in Chinese patients with acute mild ischemic stroke or TIA from atherosclerosis. Trial Registration: ClinicalTrials.gov Identifier: NCT03635749.


Assuntos
Atorvastatina , Inibidores de Hidroximetilglutaril-CoA Redutases , Ataque Isquêmico Transitório , AVC Isquêmico , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Idoso , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Método Duplo-Cego , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/prevenção & controle , Atorvastatina/uso terapêutico , Atorvastatina/administração & dosagem , Ataque Isquêmico Transitório/tratamento farmacológico , Adulto , Isquemia Encefálica/tratamento farmacológico , Idoso de 80 Anos ou mais , Prevenção Secundária/métodos , Inibidores da Agregação Plaquetária/uso terapêutico , Inibidores da Agregação Plaquetária/administração & dosagem
12.
Cell Stem Cell ; 31(8): 1187-1202.e8, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38772378

RESUMO

Cell-based ex vivo gene therapy in solid organs, especially the liver, has proven technically challenging. Here, we report a feasible strategy for the clinical application of hepatocyte therapy. We first generated high-quality autologous hepatocytes through the large-scale expansion of patient-derived hepatocytes. Moreover, the proliferating patient-derived hepatocytes, together with the AAV2.7m8 variant identified through screening, enabled CRISPR-Cas9-mediated targeted integration efficiently, achieving functional correction of pathogenic mutations in FAH or OTC. Importantly, these edited hepatocytes repopulated the injured mouse liver at high repopulation levels and underwent maturation, successfully treating mice with tyrosinemia following transplantation. Our study combines ex vivo large-scale cell expansion and gene editing in patient-derived transplantable hepatocytes, which holds potential for treating human liver diseases.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Terapia Genética , Hepatócitos , Hepatopatias , Hepatócitos/metabolismo , Hepatócitos/transplante , Sistemas CRISPR-Cas/genética , Humanos , Animais , Hepatopatias/terapia , Hepatopatias/genética , Hepatopatias/patologia , Camundongos , Terapia Genética/métodos , Tirosinemias/terapia , Tirosinemias/genética , Proliferação de Células , Hidrolases
13.
Circulation ; 150(4): 283-298, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38752340

RESUMO

BACKGROUND: Familial hypertrophic cardiomyopathy has severe clinical complications of heart failure, arrhythmia, and sudden cardiac death. Heterozygous single nucleotide variants (SNVs) of sarcomere genes such as MYH7 are the leading cause of this type of disease. CRISPR-Cas13 (clustered regularly interspaced short palindromic repeats and their associated protein 13) is an emerging gene therapy approach for treating genetic disorders, but its therapeutic potential in genetic cardiomyopathy remains unexplored. METHODS: We developed a sensitive allelic point mutation reporter system to screen the mutagenic variants of Cas13d. On the basis of Cas13d homology structure, we rationally designed a series of Cas13d variants and obtained a high-precision Cas13d variant (hpCas13d) that specifically cleaves the MYH7 variant RNAs containing 1 allelic SNV. We validated the high precision and low collateral cleavage activity of hpCas13d through various in vitro assays. We generated 2 HCM mouse models bearing distinct MYH7 SNVs and used adenovirus-associated virus serotype 9 to deliver hpCas13d specifically to the cardiomyocytes. We performed a large-scale library screening to assess the potency of hpCas13d in resolving 45 human MYH7 allelic pathogenic SNVs. RESULTS: Wild-type Cas13d cannot distinguish and specifically cleave the heterozygous MYH7 allele with SNV. hpCas13d, with 3 amino acid substitutions, had minimized collateral RNase activity and was able to resolve various human MYH7 pathological sequence variations that cause hypertrophic cardiomyopathy. In vivo application of hpCas13d to 2 hypertrophic cardiomyopathy models caused by distinct human MYH7 analogous sequence variations specifically suppressed the altered allele and prevented cardiac hypertrophy. CONCLUSIONS: Our study unveils the great potential of CRISPR-Cas nucleases with high precision in treating inheritable cardiomyopathy and opens a new avenue for therapeutic management of inherited cardiac diseases.


Assuntos
Sistemas CRISPR-Cas , Miosinas Cardíacas , Cardiomiopatia Hipertrófica , Cadeias Pesadas de Miosina , Animais , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/terapia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Camundongos , Humanos , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Alelos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Modelos Animais de Doenças , Terapia Genética/métodos
14.
Sci Adv ; 10(16): eadl4336, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38630829

RESUMO

Developing protein drugs that can target intracellular sites remains a challenge due to their inadequate membrane permeability. Efficient carriers for cytosolic protein delivery are required for protein-based drugs, cancer vaccines, and CRISPR-Cas9 gene therapies. Here, we report a screening process to identify highly efficient materials for cytosolic protein delivery from a library of dual-functionalized polymers bearing both boronate and lipoic acid moieties. Both ligands were found to be crucial for protein binding, endosomal escape, and intracellular protein release. Polymers with higher grafting ratios exhibit remarkable efficacies in cytosolic protein delivery including enzymes, monoclonal antibodies, and Cas9 ribonucleoprotein while preserving their activity. Optimal polymer successfully delivered Cas9 ribonucleoprotein targeting NLRP3 to disrupt NLRP3 inflammasomes in vivo and ameliorate inflammation in a mouse model of psoriasis. Our study presents a promising option for the discovery of highly efficient materials tailored for cytosolic delivery of specific proteins and complexes such as Cas9 ribonucleoprotein.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Técnicas de Transferência de Genes , Terapia Genética , Polímeros/química , Ribonucleoproteínas/genética
17.
Mol Cancer Ther ; 23(7): 924-938, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38641411

RESUMO

Although patient-derived xenografts (PDX) are commonly used for preclinical modeling in cancer research, a standard approach to in vivo tumor growth analysis and assessment of antitumor activity is lacking, complicating the comparison of different studies and determination of whether a PDX experiment has produced evidence needed to consider a new therapy promising. We present consensus recommendations for assessment of PDX growth and antitumor activity, providing public access to a suite of tools for in vivo growth analyses. We expect that harmonizing PDX study design and analysis and assessing a suite of analytical tools will enhance information exchange and facilitate identification of promising novel therapies and biomarkers for guiding cancer therapy.


Assuntos
Neoplasias , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Neoplasias/patologia , Neoplasias/tratamento farmacológico , National Cancer Institute (U.S.) , Estados Unidos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Consenso
19.
BioDrugs ; 38(3): 369-385, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38489061

RESUMO

The remarkable advance in gene editing technology presents unparalleled opportunities for transforming medicine and finding cures for hereditary diseases. Human trials of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9)-based therapeutics have demonstrated promising results in disrupting or deleting target sequences to treat specific diseases. However, the potential of targeted gene insertion approaches, which offer distinct advantages over disruption/deletion methods, remains largely unexplored in human trials due to intricate technical obstacles and safety concerns. This paper reviews the recent advances in preclinical studies demonstrating in vivo targeted gene insertion for therapeutic benefits, targeting somatic solid tissues through systemic delivery. With a specific emphasis on hemophilia as a prominent disease model, we highlight advancements in insertion strategies, including considerations of DNA repair pathways, targeting site selection, and donor design. Furthermore, we discuss the complex challenges and recent breakthroughs that offer valuable insights for progressing towards clinical trials.


Assuntos
Sistemas CRISPR-Cas , Desenvolvimento de Medicamentos , Edição de Genes , Terapia Genética , Hemofilia A , Humanos , Hemofilia A/genética , Hemofilia A/terapia , Edição de Genes/métodos , Desenvolvimento de Medicamentos/métodos , Terapia Genética/métodos , Animais , Mutagênese Insercional
20.
Nat Chem Biol ; 20(9): 1176-1187, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38553609

RESUMO

Cytosine base editors (CBEs) are effective tools for introducing C-to-T base conversions, but their clinical applications are limited by off-target and bystander effects. Through structure-guided engineering of human APOBEC3A (A3A) deaminase, we developed highly accurate A3A-CBE (haA3A-CBE) variants that efficiently generate C-to-T conversion with a narrow editing window and near-background level of DNA and RNA off-target activity, irrespective of methylation status and sequence context. The engineered deaminase domains are compatible with PAM-relaxed SpCas9-NG variant, enabling accurate correction of pathogenic mutations in homopolymeric cytosine sites through flexible positioning of the single-guide RNAs. Dual adeno-associated virus delivery of one haA3A-CBE variant to a mouse model of tyrosinemia induced up to 58.1% editing in liver tissues with minimal bystander editing, which was further reduced through single dose of lipid nanoparticle-based messenger RNA delivery of haA3A-CBEs. These results highlight the tremendous promise of haA3A-CBEs for precise genome editing to treat human diseases.


Assuntos
Citidina Desaminase , Edição de Genes , Edição de Genes/métodos , Humanos , Animais , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Camundongos , Células HEK293 , Engenharia de Proteínas/métodos , Proteínas/genética , Proteínas/metabolismo , Proteínas/química , Sistemas CRISPR-Cas , Dependovirus/genética , Citosina/metabolismo , Citosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...