Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.190
Filtrar
1.
BMC Musculoskelet Disord ; 25(1): 517, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970068

RESUMO

BACKGROUND: Although previous studies have suggested a possible association between bone mineral density (BMD) and intervertebral disc degeneration (IDD), the causal relationship between them remains unclear. Evidence from accumulating studies indicates that they might mutually influence one another. However, observational studies may be affected by potential confounders. Meanwhile, Mendelian randomization (MR) study can overcome these confounders to assess causality. OBJECTIVES: This Mendelian randomization (MR) study aimed to explore the causal effect of bone mineral density (BMD) on intervertebral disc degeneration (IDD). METHODS: Summary data from genome-wide association studies of bone mineral density (BMD) and IDD (the FinnGen biobank) have been acquired. The inverse variance weighted (IVW) method was utilized as the primary MR analysis approach. Weighted median, MR-Egger regression, weighted mode, and simple mode were used as supplements. The Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) and MR-Egger regression were performed to assess horizontal pleiotropy. Cochran's Q test evaluated heterogeneity. Leave-one-out sensitivity analysis was further conducted to determine the reliability of the causal relationship. Multivariate MR (MVMR) analyses used multivariable inverse variance-weighted methods to individually and jointly adjust for four potential confounders, body mass index (BMI), Type2 diabetes, hyperthyroidism and smoking. A reverse MR analysis was conducted to assess potential reverse causation. RESULTS: In the univariate MR analysis, femoral neck bone mineral density (FNBMD), heel bone mineral density (eBMD), lumbar spine bone mineral density (LSBMD), and total body bone mineral density (TB BMD) had a direct causal effect on intervertebral disc degeneration (IDD) [FNBMD-related analysis: OR(95%CI) = 1.17 (1.04 to 1.31), p = 0.008, eBMD-related analysis: OR(95%CI) = 1.06 (1.01 to 1.12), p = 0.028, LSBMD-related analysis: OR(95%CI) = 1.20 (1.10 to 1.31), p = 3.38E-7,TB BMD-related analysis: OR(95%CI) = 1.20 (1.12 to 1.29), p = 1.0E-8]. In the MVMR analysis, it was revealed that, even after controlling for confounding factors, heel bone mineral density (eBMD), lumbar spine bone mineral density (LSBMD), and total body bone mineral density (TB BMD) still maintained an independent and significant causal association with IDD(Adjusting for heel bone mineral density: beta = 0.073, OR95% CI = 1.08(1.02 to 1.14), P = 0.013; Adjusting for lumbar spine bone mineral density: beta = 0.11, OR(95%CI) = 1.12(1.02 to 1.23), P = 0.03; Adjusting for total body bone mineral density: beta = 0.139, OR95% CI = 1.15(1.06 to 1.24), P = 5.53E - 5). In the reverse analysis, no evidence was found to suggest that IDD has an impact on BMD. CONCLUSIONS: The findings from our univariate and multivariable Mendelian randomization analysis establish a substantial positive causal association between BMD and IDD, indicating that higher bone mineral density may be a significant risk factor for intervertebral disc degeneration. Notably, no causal effect of IDD on these four measures of bone mineral density was observed. Further research is required to elucidate the underlying mechanisms governing this causal relationship.


Assuntos
Densidade Óssea , Estudo de Associação Genômica Ampla , Degeneração do Disco Intervertebral , Análise da Randomização Mendeliana , Humanos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/epidemiologia , Fatores de Risco , Masculino , Feminino , Análise Multivariada
2.
J Chem Phys ; 161(3)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39007392

RESUMO

Silicon, renowned for its remarkable energy density, has emerged as a focal point in the pursuit of high-energy storage solutions for the next generation. Nevertheless, silicon electrodes are known to undergo significant volume expansion during the insertion of lithium ions, leading to structural deformation and the development of internal stresses, and causing a rapid decline in battery capacity and overall lifespan. To gain deeper insights into the intricacies of charge rate effects, this study employs a combination of in situ measurements and computational modeling to elucidate the cyclic performance of composite silicon electrodes. The findings derived from the established model and curvature measurement system unveil the substantial alterations in stress and deformation as a consequence of varying charge rates. Notably, the active layer experiences compressive forces that diminish as the charge rate decreases. At a charge rate of 0.2, the active layer endures a maximum stress of 89.145 MPa, providing a comprehensive explanation for the observed deterioration in cycling performance at higher charge rates. This study not only establishes a fundamental basis for subsequent stress analyses of silicon electrodes but also lays a solid foundation for further exploration of the impact of charge rates on composite silicon electrodes.

3.
J Intensive Med ; 4(3): 368-375, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39035610

RESUMO

Background: Emerging evidence suggests that minimal acute kidney injury (stage 1 AKI) is associated with increased hospital mortality rates. However, for those who do not meet the AKI diagnostic criteria, whether a small increase in serum creatinine (SCr) levels is associated with an increased mortality rate in elderly patients is not known. Therefore, we aimed to investigate small elevations in SCr of <26.5 µmol/L within 48 h after invasive mechanical ventilation (MV) on the short-term mortality of critically ill patients in the geriatric population. Methods: We conducted a retrospective, observational, multicenter cohort study enrolling consecutive elderly patients (≥75 years) who received invasive MV from January 2008 to December 2020. Recursive partitioning was used to calculate the ratio of SCr rise from baseline within 48 h after MV and divided into six groups, (1) <10%, (2) 10%-<20%, (3) 20%-<30%, (4) 30%-<40%, (5) 40%-<50%, and (6) ≥50%, where the reference interval was defined as the ratio <10% based on an analysis, which confirmed that the lowest mortality risk was found in this range. Clinical data and laboratory data were noted. Their general conditions and clinical characteristics were compared between the six groups. Prognostic survival factors were identified using Cox regression analysis. Kaplan-Meier survival analysis was employed for the accumulative survival rate. Results: A total of 1292 patients (1171 men) with a median age of 89 (interquartile range: 85-92) with MV were suitable for further analysis. In all, 376 patients had any stage of early AKI, and 916 patients had no AKI. Among 916 non-AKI patients, 349 patients were in the ratio <10%, 291 in the 10%-<20% group, 169 in the 20%-<30% group, 68 in the 30%-<40% group, 25 in the 40%-<50% group, and 14 in the ≥50% group. The 28-day mortality rates in the six groups from the lowest (<10%) to the highest (≥50%) were 8.0%, 16.8%, 28.4%, 54.4%, 80.0%, and 85.7%, respectively. In the multivariable-adjusted analysis, patients with a ratio of 10%-<20% (hazard ratio [HR]=2.244; 95% confidence interval [CI]: 1.410 to 3.572; P=0.001), 20%-<30% (HR=3.822; 95% CI: 2.433 to 6.194; P <0.001), 30%-<40% (HR=10.472; 95% CI: 6.379 to 17.190; P <0.001), 40%-<50% (HR=13.887; 95% CI: 7.624 to 25.292; P <0.001), and ≥50% (HR=13.618; 95% CI: 6.832 to 27.144; P <0.001) had relatively higher 28-day mortality rates. The 90-day mortality rates in the six strata were 30.1%, 35.1%, 45.0%, 60.3%, 80.0%, and 85.7%, respectively. Significant interactions were also observed between the ratio and 90-day mortality: patients with a ratio of 10%-<20% (HR=1.322; 95% CI: 1.006 to 1.738; P=0.045), 20%-<30% (HR=1.823; 95% CI: 1.356 to 2.452; P <0.001), 30%-<40% (HR=3.751; 95% CI: 2.601 to 5.410; P <0.001), 40%-<50% (HR=5.735; 95% CI: 3.447 to 9.541; P <0.001), and ≥50% (HR=6.305; 95% CI: 3.430 to 11.588; P <0.001) had relatively higher 90-day mortality rates. Conclusions: Our study suggests that a ≥ 10% SCr rise from baseline within 48 h after MV was independently associated with short-term all-cause mortality in mechanically ventilated elderly patients.

4.
CNS Neurosci Ther ; 30(6): e14815, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38922778

RESUMO

AIMS: Colony stimulating factor 1 receptor (CSF1R)-related leukoencephalopathy is a rapidly progressing neurodegenerative disease caused by CSF1R gene mutations. This study aimed to identify and investigate the effect of a novel intronic mutation (c.1754-3C>G) of CSF1R on splicing. METHODS: A novel intronic mutation was identified using whole-exome sequencing. To investigate the impact of this mutation, we employed various bioinformatics tools to analyze the transcription of the CSF1R gene and the three-dimensional structure of its encoded protein. Furthermore, reverse transcription polymerase chain reaction (RT-PCR) was performed to validate the findings. RESULTS: A novel mutation (c.1754-3C>G) in CSF1R was identified, which results in exon 13 skipping due to the disruption of the 3' splice site consensus sequence NYAG/G. This exon skipping event was further validated in the peripheral blood of the mutation carrier through RT-PCR and Sanger sequencing. Protein structure prediction indicated a disruption in the tyrosine kinase domain, with the truncated protein showing significant structural alterations. CONCLUSIONS: Our findings underscore the importance of intronic mis-splicing mutations in the diagnosis and management of CSF1R-related leukoencephalopathy.


Assuntos
Íntrons , Leucoencefalopatias , Mutação , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Humanos , Leucoencefalopatias/genética , Mutação/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Íntrons/genética , Feminino , Masculino , Adulto , Splicing de RNA/genética , Receptor de Fator Estimulador de Colônias de Macrófagos
5.
PLoS Pathog ; 20(6): e1012311, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38885273

RESUMO

The majority of rod-shaped and some filamentous plant viruses encode a cysteine-rich protein (CRP) that functions in viral virulence; however, the roles of these CRPs in viral infection remain largely unknown. Here, we used barley stripe mosaic virus (BSMV) as a model to investigate the essential role of its CRP in virus morphogenesis. The CRP protein γb directly interacts with BSMV coat protein (CP), the mutations either on the His-85 site in γb predicted to generate a potential CCCH motif or on the His-13 site in CP exposed to the surface of the virions abolish the zinc-binding activity and their interaction. Immunogold-labeling assays show that γb binds to the surface of rod-shaped BSMV virions in a Zn2+-dependent manner, which enhances the RNA binding activity of CP and facilitates virion assembly and stability, suggesting that the Zn2+-dependent physical association of γb with the virion is crucial for BSMV morphogenesis. Intriguingly, the tightly binding of diverse CRPs to their rod-shaped virions is a general feature employed by the members in the families Virgaviridae (excluding the genus Tobamovirus) and Benyviridae. Together, these results reveal a hitherto unknown role of CRPs in the assembly and stability of virus particles, and expand our understanding of the molecular mechanism underlying virus morphogenesis.


Assuntos
Vírion , Zinco , Zinco/metabolismo , Vírion/metabolismo , Proteínas do Capsídeo/metabolismo , Montagem de Vírus/fisiologia , Vírus de Plantas/metabolismo , Vírus de Plantas/fisiologia , Doenças das Plantas/virologia , Cisteína/metabolismo , Proteínas Virais/metabolismo , Morfogênese
6.
Front Biosci (Landmark Ed) ; 29(6): 224, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38940022

RESUMO

BACKGROUND: The objective of this research was to identify differentially expressed genes (DEGs) related to ferroptosis in the annulus fibrosus (AF) during intervertebral disc degeneration (IDD). METHODS: We analyzed gene data from degenerated and normal AF obtained from the GSE70362 and GSE147383 datasets. An analysis to determine the functional significance of the DEGs was conducted, followed by the creation of a network illustrating the interactions between proteins. We further analyzed the immune infiltration of the DEGs and determined the hub DEGs using LASSO regression analysis. Finally, we identified the hub ferroptosis-related DEGs (FRDEGs) and verified their expression levels using Real-time quantitative polymerase chain reaction (RT-qPCR), Western blot, Immunohistochemical Staining (IHC), and Immunofluorescence (IF). RESULTS: By analyzing the GSE70362 and GSE147383 datasets, we identified 118 DEGs. In degenerative AF groups, we observed a significant increase in immune infiltration of resting memory CD4+ T cells. LASSO regression analysis revealed 9 hub DEGs. The construction of a Receiver Operating Characteristic (ROC) curve yielded an Area Under the Curve (AUC) value of 0.762. Furthermore, we found that MGST1 is a hub gene related to ferroptosis. Our examination of immune infiltration indicated that MGST1 primarily influences macrophage M0 in different immune cell expression groups. Finally, our observations revealed a marked upregulation of MGST1 expression in the degenerated annulus fibrosus tissue. CONCLUSION: Our findings indicate an upsurge in MGST1 levels within degenerative AF, potentially playing a crucial role in the exacerbation of IDD. These findings provide a foundation for further exploration of the pathological mechanisms underlying IDD and offer potential drug targets for intervention.


Assuntos
Anel Fibroso , Biologia Computacional , Ferroptose , Glutationa Transferase , Degeneração do Disco Intervertebral , Humanos , Anel Fibroso/metabolismo , Anel Fibroso/patologia , Biologia Computacional/métodos , Bases de Dados Genéticas , Ferroptose/genética , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Mapas de Interação de Proteínas/genética , Glutationa Transferase/genética , Glutationa Transferase/metabolismo
7.
Ecotoxicol Environ Saf ; 281: 116628, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38905936

RESUMO

Microplastics (MPs) and okadaic acid (OA) are known to coexist in marine organisms, potentially impacting humans through food chain. However, the combined toxicity of OA and MPs remains unknown. In this study, mice were orally administered OA at 200 µg/kg bw and MPs at 2 mg/kg bw. The co-exposure group showed a significant increase in malondialdehyde (MDA) content and significant decreases in superoxide dismutase (SOD) activity and glutathione (GSH) level compared to the control, MPs and OA groups (p < 0.05). Additionally, the co-exposure group exhibited significantly higher levels of IL-1ß and IL-18 compared to other groups (p < 0.05). These results demonstrated that co-exposure to MPs and OA induces oxidative stress and exacerbates inflammation. Histological and cellular ultrastructure analyses suggested that this combined exposure may enhance gut damage and compromise barrier integrity. Consequently, the concentration of OA in the small intestine of the co-exposure group was significantly higher than that in the OA group. Furthermore, MPs were observed in the lamina propria of the gut in the co-exposure group. Transcriptomic analysis revealed that the co-exposure led to increased expression of certain genes related to the NF-κB/NLRP3 pathway compared to the OA and MPs groups. Overall, this combined exposure may disrupt the intestinal barrier, and promote inflammation through the NF-κB/NLRP3 pathway. These findings provide precious information for the understanding of health risks associated with MPs and phycotoxins.


Assuntos
Intestino Delgado , Microplásticos , Ácido Okadáico , Estresse Oxidativo , Poliestirenos , Animais , Microplásticos/toxicidade , Camundongos , Ácido Okadáico/toxicidade , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Intestino Delgado/ultraestrutura , Poliestirenos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Malondialdeído/metabolismo , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/toxicidade
8.
Front Cell Dev Biol ; 12: 1416780, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887517

RESUMO

Introduction: Nail stem cell (NSC) differentiation plays a vital role in maintaining nail homeostasis and facilitating digit regeneration. Recently, onychofibroblasts (OFs), specialized mesenchymal cells beneath the nail matrix, have emerged as potential regulators of NSC differentiation. However, limited understanding of OFs' cellular properties and transcriptomic profiles hinders our comprehension of their role. This study aims to characterize human OFs and investigate their involvement in NSC differentiation. Methods: Human OFs were isolated and characterized for their mesenchymal stem cell (MSC)-like phenotype through flow cytometry and multilineage differentiation assays. Bulk RNA-seq analysis was conducted on three samples of OFs and control fibroblasts from human nail units to delineate their molecular features. Integrated analysis with scRNA-seq data was performed to identify key signaling pathways involved in OF-induced NSC differentiation. Co-culture experiments, siRNA transfection, RT-qPCR, and immunocytochemistry were employed to investigate the effect of OF-derived soluble proteins on NSC differentiation. Drug treatments, RT-qPCR, western blotting, and immunocytochemistry were used to verify the regulation of candidate signaling pathways on NSC differentiation in vitro. Results: Human OFs exhibited slow cell cycle kinetics, expressed typical MSC markers, and demonstrated multilineage differentiation potential. Bulk RNA-seq analysis revealed differential gene expression in OFs compared to control fibroblasts, highlighting their role in coordinating nail development. Integrated analysis identified BMP4 as a pivotal signal for OFs to participate in NSC differentiation through mesenchymal-epithelial interactions, with the TGF-beta pathway possibly mediating this signal. OFs synthesized and secreted more BMP4 than control fibroblasts, and BMP4 derived from OFs induced NSC differentiation in a co-culture model. Recombinant human BMP4 activated the TGF-beta pathway in NSCs, leading to cell differentiation, while the BMP type I receptor inhibitor LDN193189 attenuated this effect. Discussion: This study characterizes the cellular and molecular features of human OFs, demonstrating their ability to regulate NSC differentiation via the TGF-beta signaling pathway. These findings establish a connection between the dermal microenvironment and NSC differentiation, suggesting the potential of OFs, in conjunction with NSCs, for developing novel therapies targeting nail and digit defects, even severe limb amputation.

9.
Nat Commun ; 15(1): 5178, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890359

RESUMO

Freshwater discharge from ice sheets induces surface atmospheric cooling and subsurface ocean warming, which are associated with negative and positive feedbacks respectively. However, uncertainties persist regarding these feedbacks' relative strength and combined effect. Here we assess associated feedbacks in a coupled ice sheet-climate model, and show that for the Antarctic Ice Sheet the positive feedback dominates in moderate future warming scenarios and in the early stage of ice sheet retreat, but is overwhelmed by the negative feedback in intensive warming scenarios when the West Antarctic Ice Sheet undergoes catastrophic collapse. The Atlantic Meridional Overturning Circulation is affected by freshwater discharge from both the Greenland and the Antarctic ice sheets and, as an interhemispheric teleconnection bridge, exacerbates the opposing ice sheet's retreat via the Bipolar Seesaw. These results highlight the crucial role of ice sheet-climate interactions via freshwater flux in future ice sheet retreat and associated sea-level rise.

10.
Mikrochim Acta ; 191(7): 386, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38867016

RESUMO

The combination of CRISPR/Cas12a and functional DNA provides the possibility of constructing biosensors for detecting non-nucleic-acid targets. In the current study, the duplex protospacer adjacent motif (PAM) in the activator of CRISPR/Cas12a was used as a molecular switch, and a sensitive adenosine triphosphate (ATP) detection biosensor was constructed using an allosteric probe-conjugated PAM site formation in hybridization chain reaction (HCR) integrated with the CRISPR/Cas12a system (APF-CRISPR). In the absence of ATP, an aptamer-containing probe (AP) is in a stem-loop structure, which blocks the initiation of HCR. In the presence of ATP, the structure of AP is changed upon ATP binding, resulting in the release of the HCR trigger strand and the production of long duplex DNA with many PAM sites. Since the presence of a duplex PAM site is crucial for triggering the cleavage activity of CRISPR/Cas12a, the ATP-dependent formation of the PAM site in HCR products can initiate the FQ-reporter cleavage, allowing ATP quantification by measuring the fluorescent signals. By optimizing the sequence elements and detection conditions, the aptasensor demonstrated superior detection performance. The limit of detection (LOD) of the assay was estimated to be 1.16 nM, where the standard deviation of the blank was calculated based on six repeated measurements. The dynamic range of the detection was 25-750 nM, and the whole workflow of the assay was approximately 60 min. In addition, the reliability and practicability of the aptasensor were validated by comparing it with a commercially available chemiluminescence kit for ATP detection in serum. Due to its high sensitivity, specificity, and reliable performance, the APF-CRISPR holds great potential in bioanalytical studies for ATP detection. In addition, we have provided a proof-of-principle for constructing a CRISPR/Cas12a-based aptasensor, in which the PAM is utilized to regulate Cas12a cleavage activity.


Assuntos
Trifosfato de Adenosina , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Sistemas CRISPR-Cas , Trifosfato de Adenosina/química , Trifosfato de Adenosina/análise , Técnicas Biossensoriais/métodos , Aptâmeros de Nucleotídeos/química , Proteínas Associadas a CRISPR/química , Limite de Detecção , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Hibridização de Ácido Nucleico , Endodesoxirribonucleases
11.
Int J Biol Macromol ; 273(Pt 2): 133136, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38889826

RESUMO

Polylactide/ethylene vinyl alcohol copolymer (PLA/EVOH) blends and fibers with different weight ratios were prepared by melt blending, and two-step melt spinning, respectively. PLA and EVOH in PLA/EVOH blends were immiscible. When EVOH content was ≤60 %, EVOH with the average diameter of about 3 µm was dispersed in PLA matrix uniformly. The dual continuous phases could be observed in PLA/EVOH blend with 70 wt% EVOH. When the EVOH content was ≥80 %, the spherical PLA phase with the diameter of 0.25 to 1 µm was dispersed in EVOH matrix. The introduction of EVOH as nucleating agent could promote the crystallization of PLA. Both PLA and EVOH components in PLA/EVOH blends formed individual crystal phases. The viscosity of PLA/EVOH blend with 5 % EVOH was lower than that of neat PLA. The viscosity of PLA/EVOH blends with the EVOH content of ≥10 % was much higher than that of neat PLA, which showed obvious shear thinning behavior. With the increase of EVOH content, the shear thinning behavior became obvious and the critical shear rate decreased gradually. The drawn PLA/EVOH fibers with the tensile strength of ≥16 cN/tex exhibited good mechanical properties. In addition, the introduction of EVOH could improve the hydrophilicity of PLA fibers.


Assuntos
Poliésteres , Polivinil , Poliésteres/química , Polivinil/química , Viscosidade , Resistência à Tração , Cristalização
12.
Int J Biol Macromol ; 271(Pt 1): 132615, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795900

RESUMO

A series of intricate and dynamic physiological healing processes are involved in the healing of skin wounds. Herein, a multifunctional hydrogel is firstly designed and constructed by L-arginine-grafted O-carboxymethyl chitosan (CMCA), catechol-modified oxidized hyaluronic acid (DOHA), and dopamine nanoparticles (pDA-NPs). pDA-NPs were loaded in hydrogel for inherently powerful antimicrobial properties and could be as a cross-linking agent to construct hydrogels. Raffinose (Raf) was further incorporated to obtain CMCA-DOHA-pDA2@Raf hydrogel for its function of modulating epidermal differentiation. The hydrogel has good physicochemical properties and could promote cell proliferation and migration, which shows superior hemostatic capabilities in animal models of hemorrhage. The hydrogel significantly promoted wound healing on rat skin defect models by upregulating VEGF and CD31 and decreasing IL-6 and TNF-α, stimulating neovascularization and collagen deposition in epithelial structures. This multifunctional hydrogel implies the potential to be a dynamic wound dressing.


Assuntos
Quitosana , Dopamina , Hidrogéis , Nanopartículas , Rafinose , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Nanopartículas/química , Dopamina/química , Dopamina/farmacologia , Ratos , Quitosana/química , Quitosana/análogos & derivados , Quitosana/farmacologia , Rafinose/química , Rafinose/farmacologia , Proliferação de Células/efeitos dos fármacos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Humanos , Masculino , Reagentes de Ligações Cruzadas/química , Ratos Sprague-Dawley , Pele/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos
13.
Angew Chem Int Ed Engl ; : e202407007, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806441

RESUMO

Designing and synthesizing narrow band gap acceptors that exhibit high photoluminescence quantum yield (PLQY) and strong crystallinity is a highly effective, yet challenging, approach to reducing non-radiative energy losses (▵Enr) and boosting the performance of organic solar cells (OSCs). We have successfully designed and synthesized an A-D-A type fused-ring electron acceptor, named DM-F, which features a planar molecular backbone adorned with bulky three-dimensional camphane side groups at its central core. These bulky substituents effectively hinder the formation of H-aggregates of the acceptors, promoting the formation of more J-aggregates and notably elevating the PLQY of the acceptor in the film. As anticipated, DM-F showcases pronounced near-infrared absorption coupled with impressive crystallinity. Organic solar cells (OSCs) leveraging DM-F exhibit a high EQEEL value and remarkably low ▵Enr of 0.14 eV-currently the most minimal reported value for OSCs. Moreover, the power conversion efficiency (PCE) of binary and ternary OSCs utilizing DM-F has reached 16.16 % and 20.09 %, respectively, marking a new apex in reported efficiency within the OSCs field. In conclusion, our study reveals that designing narrow band gap acceptors with high PLQY is an effective way to reduce ▵Enr and improve the PCE of OSCs.

14.
Environ Sci Technol ; 58(23): 10072-10083, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38810213

RESUMO

The oxygen reduction process generating H2O2 in the photoelectrochemical (PEC) system is milder and environmentally friendly compared with the traditional anthraquinone process but still lacks the efficient electron-oxygen-proton coupling interfaces to improve H2O2 production efficiency. Here, we propose an integrated active site strategy, that is, designing a hydrophobic C-B-N interface to refine the dearth of electron, oxygen, and proton balance. Computational calculation results show a lower energy barrier for H2O2 production due to synergistic and coupling effects of boron sites for O2 adsorption, nitrogen sites for H+ binding, and the carbon structure for electron transfer, demonstrating theoretically the feasibility of the strategy. Furthermore, we construct a hydrophobic boron- and nitrogen-doped carbon black gas diffusion cathode (BN-CB-PTFE) with graphite carbon dots decorated on a BiVO4 photoanode (BVO/g-CDs) for H2O2 production. Remarkably, this approach achieves a record H2O2 production rate (9.24 µmol min-1 cm-2) at the PEC cathode. The BN-CB-PTFE cathode exhibits an outstanding Faraday efficiency for H2O2 production of ∼100%. The newly formed h-BN integrative active site can not only adsorb more O2 but also significantly improve the electron and proton transfer. Unexpectedly, coupling BVO/g-CDs with the BN-CB-PTFE gas diffusion cathode also achieves a record H2O2 production rate (6.60 µmol min-1 cm-2) at the PEC photoanode. This study opens new insight into integrative active sites for electron-O2-proton coupling in a PEC H2O2 production system that may be meaningful for environment and energy applications.


Assuntos
Eletrodos , Elétrons , Peróxido de Hidrogênio , Oxigênio , Prótons , Oxigênio/química , Peróxido de Hidrogênio/química , Técnicas Eletroquímicas
15.
J Ethnopharmacol ; 332: 118388, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38796069

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: San-Bai Decoction (SBD) is a classic whitening prescription originally recorded in the 'Introduction to Medicine' of the Ming Dynasty. SBD has been known for invigorating Qi and blood, promoting spleen and stomach, whitening skin, and fading melasma. However, its pharmacodynamic material basis and specific mechanism remain unclear. AIM OF THE STUDY: The aim of this study is to clarify the pharmacodynamic material basis of SBD and its mechanism of removing melasma. MATERIALS AND METHODS: The positive and negative ion mass spectrum data of SBD extract were collected by UHPLC-Q-Exactive Orbitrap MS/MS, imported into Compound Discoverer (CD) 3.1 software, matched through the online database, and manually checked. Finally, the in vitro chemical components of SBD were classified. Similarly, the mass spectrum data of SBD in the serum of normal rats and melasma model rats were also analyzed by CD 3.1 software. The in vitro identified Compound file of SBD was imported into the Expected Compounds and the Generate Expected Compounds project was selected. The SBD compounds were then chosen under the Compound Section. All phase I and II reaction types related to SBD components were selected, and the metabolic platform of CD 3.1 software was utilized to process the results and obtain possible metabolites. The metabolites were scored and products with high scores were subsequently screened. According to literature comparison, the final metabolites of SBD in both normal rats and melasma model rats were determined and comprehensively analyzed. The Melasma model rats were constructed through intramuscular injection of progesterone and ultraviolet radiation B (UVB) irradiation. The preventing and treating effect of SBD on melasma were evaluated by regulating inflammation, epidermal collagen content, and oxidative stress. Additionally, the effect of SBD on the Phosphatidylinositol 3-kinase (PI3K)/Protein kinase B (Akt)/Glycogen synthase kinase 3ß (GSK3ß) pathway was investigated through Western blot (WB) to explore its underlying mechanism on whitening and removing melasma efficacy. RESULTS: Ultimately, 94 components were identified in SBD, including 41 flavonoids, 27 organic acids, and 9 glycosides, 3 terpenoids, 2 amides, 2 aldehydes, 1 phenylpropanoid and 9 other compounds. In the blood of normal rat group, a total of 24 prototype components and 61 metabolites were identified. Similarly, there were19 prototype components and 44 metabolites identified from the blood of melasma model rats. Pharmacodynamic experiment results indicated that SBD effectively reduced the incidence of melasma, prevent the loss of epidermal collagen, and elevate the activity of superoxide dismutase and decrease the malondialdehyde content in both liver and skin. Interestingly, the WB results demonstrated that SBD effectively activated PI3K/Akt/GSK3ß pathway, and down-regulated the expression of melanin-related proteins. CONCLUSIONS: For the first time, the components of SBD extracts, and its prototype components and metabolites in the blood of normal rats and melasma model rats were successfully identified by high-resolution liquid chromatography-mass spectrometry with CD software. Additionally, the differences of in vivo components of SBD between normal rats and melasma model rats were analyzed. The preventive and therapeutic effect of SBD on melasma was verified in the melasma model rats induced by progesterone and UVB irradiation, and its mechanism was related to activating PI3K/Akt/GSK3ß pathway and downregulating the expression of melanin-related proteins. These results provide an experimental foundation for further research on the pharmacodynamic substance basis and pharmacodynamic mechanism of SBD, as well as developing new anti-melasma formula with SBD.


Assuntos
Medicamentos de Ervas Chinesas , Melanose , Ratos Sprague-Dawley , Animais , Melanose/tratamento farmacológico , Ratos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Masculino , Modelos Animais de Doenças , Feminino , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Preparações Clareadoras de Pele/farmacologia
16.
ACS Nano ; 18(22): 14496-14506, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38771969

RESUMO

Hydrogen obtained from electrochemical water splitting is the most promising clean energy carrier, which is hindered by the sluggish kinetics of the oxygen evolution reaction (OER). Thus, the development of an efficient OER electrocatalyst using nonprecious 3d transition elements is desirable. Multielement synergistic effect and lattice oxygen oxidation are two well-known mechanisms to enhance the OER activity of catalysts. The latter is generally related to the high valence state of 3d transition elements leading to structural destabilization under the OER condition. We have found that Al doping in nanosheet Ni-Fe hydroxide exhibits 2-fold advantage: (1) a strong enhanced OER activity from 277 mV to 238 mV at 10 mA cm-2 as the Ni valence state increases from Ni3.58+ to Ni3.79+ observed from in situ X-ray absorption spectra. (2) Operational stability is strengthened, while weakness is expected since the increased NiIV content with 3d8L2 (L denotes O 2p hole) would lead to structural instability. This contradiction is attributed to a reduced lattice oxygen contribution to the OER upon Al doping, as verified through in situ Raman spectroscopy, while the enhanced OER activity is interpreted as an enormous gain in exchange energy of FeIV-NiIV, facilitated by their intersite hopping. This study reveals a mechanism of Fe-Ni synergy effect to enhance OER activity and simultaneously to strengthen operational stability by suppressing the contribution of lattice oxygen.

17.
Environ Sci Technol ; 58(20): 8610-8630, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38720447

RESUMO

Solar desalination, a green, low-cost, and sustainable technology, offers a promising way to get clean water from seawater without relying on electricity and complex infrastructures. However, the main challenge faced in solar desalination is salt accumulation, either on the surface of or inside the solar evaporator, which can impair solar-to-vapor efficiency and even lead to the failure of the evaporator itself. While many ideas have been tried to address this ″salt accumulation″, scientists have not had a clear system for understanding what works best for the enhancement of salt-rejecting ability. Therein, for the first time, we classified the state-of-the-art salt-rejecting designs into isolation strategy (isolating the solar evaporator from brine), dilution strategy (diluting the concentrated brine), and crystallization strategy (regulating the crystallization site into a tiny area). Through the specific equations presented, we have identified key parameters for each strategy and highlighted the corresponding improvements in the solar desalination performance. This Review provides a semiquantitative perspective on salt-rejecting designs and critical parameters for enhancing the salt-rejecting ability of dilution-based, isolation-based, and crystallization-based solar evaporators. Ultimately, this knowledge can help us create reliable solar desalination solutions to provide clean water from even the saltiest sources.


Assuntos
Água do Mar , Purificação da Água , Purificação da Água/métodos , Água do Mar/química , Luz Solar , Salinidade , Sais/química , Cloreto de Sódio/química
18.
ACS Nano ; 18(21): 13899-13909, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38757652

RESUMO

The ability to precisely identify crystal orientation as well as to nondestructively modulate optical anisotropy in atomically thin rhenium dichalcogenides is critical for the future development of polarization programmable optoelectronic devices, which remains challenging. Here, we report a modified polarized optical imaging (POI) method capable of simultaneously identifying in-plane (Re chain) and out-of-plane (c-axis) crystal orientations of the monolayer to few-layer ReS2, meanwhile, propose a nondestructive approach to modulate the optical anisotropy in ReS2 via twist stacking. The results show that parallel and near-cross POI are effective to independently identify the in-plane and out-of-plane crystal orientations, respectively, while regulating the twist angle allows for giant modulation of in-plane optical anisotropy from highly intrinsic anisotropy to complete optical isotropy in the stacked ReS2 bilayer (with either the same or opposite c-axes), as well modeled by linear electromagnetic theory. Overall, this study not only develops a simple optical method for precise crystal orientation identification but also offers an efficient light polarization control strategy, which is a big step toward the practical application of anisotropic van der Waals materials in the design of nanophotonic and optoelectronic devices.

19.
Neurosci Lett ; 832: 137800, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38697601

RESUMO

Lipopolysaccharide (LPS) is an important neurotoxin that can cause inflammatory activation of microglia. ZC3H12D is a novel immunomodulator, which plays a remarkable role in neurological pathologies. It has not been characterized whether ZC3H12D is involved in the regulation of microglial activation. The aim of this study was to investigate the role of ZC3H12D in LPS-induced pro-inflammatory microglial activation and its potential mechanism. To elucidate this, we established animal models of inflammatory injury by intraperitoneal injection of LPS (10 mg/kg). The results of the open-field test showed that LPS caused impaired motor function in mice. Meanwhile, LPS caused pro-inflammatory activation of microglia in the mice cerebral cortex and inhibited the expression of ZC3H12D. We also constructed in vitro inflammatory injury models by treating BV-2 microglia with LPS (0.5 µg/mL). The results showed that down-regulated ZC3H12D expression was associated with LPS-induced pro-inflammatory microglial activation, and further intervention of ZC3H12D expression could inhibited LPS-induced pro-inflammatory activation of microglia. In addition, LPS activated the TLR4-NF-κB signaling pathway, and this process can also be reversed by promoting ZC3H12D expression. At the same time, the addition of resveratrol, a nutrient previously proven to inhibit pro-inflammatory microglial activation, can also reverse this process by increasing the expression of ZC3H12D. Summarized, our data elucidated that ZC3H12D in LPS-induced pro-inflammatory activation of brain microglia via restraining the TLR4-NF-κB pathway. This study may provide a valuable clue for potential therapeutic targets for neuroinflammation-related injuries.


Assuntos
Lipopolissacarídeos , Microglia , NF-kappa B , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Microglia/metabolismo , Microglia/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Masculino , Inflamação/metabolismo , Inflamação/induzido quimicamente , Camundongos Endogâmicos C57BL
20.
Biosens Bioelectron ; 259: 116385, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38759310

RESUMO

Cell-substrate interaction plays a critical role in determining the mechanical status of living cell membrane. Changes of substrate surface properties can significantly alter the cell mechanical microenvironment, leading to mechanical changes of cell membrane. However, it is still difficult to accurately quantify the influence of the substrate surface properties on the mechanical status of living cell membrane without damage. This study addresses the challenge by using an electrochemical sensor made from an ultrasmall quartz nanopipette. With the tip diameter less than 100 nm, the nanopipette-based sensor achieves highly sensitive, noninvasive and label-free monitoring of the mechanical status of single living cells by collecting stable cyclic membrane oscillatory signals from continuous current versus time traces. The electrochemical signals collected from PC12 cells cultured on three different substrates (bare ITO (indium tin oxides) glass, hydroxyl modified ITO glass, amino modified ITO glass) indicate that the microenvironment more favorable for cell adhesion can increase the membrane stiffness. This work provides a label-free electrochemical approach to accurately quantify the mechanical status of single living cells in real-time, which may help to better understand the relationship between the cell membrane and the extra cellular matrix.


Assuntos
Técnicas Biossensoriais , Membrana Celular , Técnicas Eletroquímicas , Compostos de Estanho , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Animais , Ratos , Células PC12 , Compostos de Estanho/química , Técnicas Eletroquímicas/métodos , Membrana Celular/química , Adesão Celular , Vibração , Propriedades de Superfície , Desenho de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...